
EDB PostgresÂ® AI for CloudNativePGâ„¢
Cluster

Version 1.26.0

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. Built at 2025-06-09T15:17:54

6
9

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
30
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

1 EDB Postgres® AI for CloudNativePG™ Cluster
2 EDB CloudNativePG Cluster release notes
2.1 EDB CloudNativePG Cluster 1.26.0 release notes
2.2 EDB CloudNativePG Cluster 1.25.2 release notes
2.3 EDB Postgres for Kubernetes 1.25.1 release notes
2.4 EDB Postgres for Kubernetes 1.25.0 release notes
2.5 EDB CloudNativePG Cluster 1.24.4 release notes
2.6 EDB Postgres for Kubernetes 1.24.3 release notes
2.7 EDB Postgres for Kubernetes 1.24.2 release notes
2.8 EDB Postgres for Kubernetes 1.24.1 release notes
2.9 EDB Postgres for Kubernetes 1.24.0 release notes
2.10 EDB Postgres for Kubernetes 1.23.6 release notes
2.11 EDB Postgres for Kubernetes 1.23.5 release notes
2.12 EDB Postgres for Kubernetes 1.23.4 release notes
2.13 EDB Postgres for Kubernetes 1.23.3 release notes
2.14 EDB Postgres for Kubernetes 1.23.2 release notes
2.15 EDB Postgres for Kubernetes 1.23.1 release notes
2.16 EDB Postgres for Kubernetes 1.23.0 release notes
2.17 EDB CloudNativePG Cluster 1.22.10 release notes
2.18 EDB Postgres for Kubernetes 1.22.9 release notes
2.19 EDB Postgres for Kubernetes 1.22.8 release notes
2.20 EDB Postgres for Kubernetes 1.22.7 release notes
2.21 EDB Postgres for Kubernetes 1.22.6 release notes
2.22 EDB Postgres for Kubernetes 1.22.5 release notes
2.23 EDB Postgres for Kubernetes 1.22.4 release notes
2.24 EDB Postgres for Kubernetes 1.22.3 release notes
2.25 EDB Postgres for Kubernetes 1.22.2 release notes
2.26 EDB Postgres for Kubernetes 1.22.1 release notes
2.27 EDB Postgres for Kubernetes 1.22.0 release notes
2.28 EDB Postgres for Kubernetes 1.21.6 release notes
2.29 EDB Postgres for Kubernetes 1.21.5 release notes
2.30 EDB Postgres for Kubernetes 1.21.4 release notes
2.31 EDB Postgres for Kubernetes 1.21.3 release notes
2.32 EDB Postgres for Kubernetes 1.21.2 release notes
2.33 EDB Postgres for Kubernetes 1.21.1 release notes
2.34 EDB Postgres for Kubernetes 1.21.0 release notes
2.35 EDB Postgres for Kubernetes 1.20.6 release notes
2.36 EDB Postgres for Kubernetes 1.20.5 release notes
2.37 EDB Postgres for Kubernetes 1.20.4 release notes
2.38 EDB Postgres for Kubernetes 1.20.3 release notes
2.39 EDB Postgres for Kubernetes 1.20.2 release notes
2.40 EDB Postgres for Kubernetes 1.20.1 release notes
2.41 EDB Postgres for Kubernetes 1.20.0 release notes
2.42 EDB Postgres for Kubernetes 1.19.6 release notes
2.43 EDB Postgres for Kubernetes 1.19.5 release notes
2.44 EDB Postgres for Kubernetes 1.19.4 release notes
2.45 EDB Postgres for Kubernetes 1.19.3 release notes
2.46 EDB Postgres for Kubernetes 1.19.2 release notes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 2

60
61
62
63
64
65
66
67
68
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
89
91
92
93
94
95
96
97
98
99

100
101
102
103
104
105
106
107
108
109
110

2.47 EDB Postgres for Kubernetes 1.19.1 release notes
2.48 EDB Postgres for Kubernetes 1.19.0 release notes
2.49 EDB Postgres for Kubernetes 1.18.13 release notes
2.50 EDB Postgres for Kubernetes 1.18.12 release notes
2.51 EDB Postgres for Kubernetes 1.18.11 release notes
2.52 EDB Postgres for Kubernetes 1.18.10 release notes
2.53 EDB Postgres for Kubernetes 1.18.9 release notes
2.54 EDB Postgres for Kubernetes 1.18.8 release notes
2.55 EDB Postgres for Kubernetes 1.18.7 release notes
2.56 EDB Postgres for Kubernetes 1.18.6 release notes
2.57 EDB Postgres for Kubernetes 1.18.5 release notes
2.58 EDB Postgres for Kubernetes 1.18.4 release notes
2.59 EDB Postgres for Kubernetes 1.18.3 release notes
2.60 EDB Postgres for Kubernetes 1.18.2 release notes
2.61 EDB Postgres for Kubernetes 1.18.1 release notes
2.62 EDB Postgres for Kubernetes 1.18.0 release notes
2.63 EDB Postgres for Kubernetes 1.17.5 release notes
2.64 EDB Postgres for Kubernetes 1.17.4 release notes
2.65 EDB Postgres for Kubernetes 1.17.3 release notes
2.66 EDB Postgres for Kubernetes 1.17.2 release notes
2.67 EDB Postgres for Kubernetes 1.17.1 release notes
2.68 EDB Postgres for Kubernetes 1.17.0 release notes
2.69 EDB Postgres for Kubernetes 1.16.5 release notes
2.70 EDB Postgres for Kubernetes 1.16.4 release notes
2.71 EDB Postgres for Kubernetes 1.16.3 release notes
2.72 EDB Postgres for Kubernetes 1.16.2 release notes
2.73 EDB Postgres for Kubernetes 1.16.1 release notes
2.74 EDB Postgres for Kubernetes 1.16.0 release notes
2.75 EDB Postgres for Kubernetes 1.15.5 release notes
2.76 EDB Postgres for Kubernetes 1.15.4 release notes
2.77 EDB Postgres for Kubernetes 1.15.3 release notes
2.78 EDB Postgres for Kubernetes 1.15.2 release notes
2.79 EDB Postgres for Kubernetes 1.15.1 release notes
2.80 EDB Postgres for Kubernetes 1.15.0 release notes
2.81 EDB Postgres for Kubernetes 1.14.0 release notes
2.82 EDB Postgres for Kubernetes 1.13.0 release notes
2.83 EDB Postgres for Kubernetes 1.12.0 release notes
2.84 EDB Postgres for Kubernetes 1.11.0 release notes
2.85 EDB Postgres for Kubernetes 1.10.0 release notes
2.86 EDB Postgres for Kubernetes 1.9.2 release notes
2.87 EDB Postgres for Kubernetes 1.9.1 release notes
2.88 EDB Postgres for Kubernetes 1.9.0 release notes
2.89 EDB Postgres for Kubernetes 1.8.0 release notes
2.90 EDB Postgres for Kubernetes 1.7.1 release notes
2.91 EDB Postgres for Kubernetes 1.7.0 release notes
2.92 EDB Postgres for Kubernetes 1.6.0 release notes
2.93 EDB Postgres for Kubernetes 1.5.1 release notes
2.94 EDB Postgres for Kubernetes 1.5.0 release notes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 3

111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
128
131
140
146
153
164
168
171
174
186
193
200
207
211
213
215
217
229
237
248
255
261
262
266
273
278
296
303
309
313
315
328

2.95 EDB Postgres for Kubernetes 1.4.0 release notes
2.96 EDB Postgres for Kubernetes 1.3.0 release notes
2.97 EDB Postgres for Kubernetes 1.2.1 release notes
2.98 EDB Postgres for Kubernetes 1.2.0 release notes
2.99 EDB Postgres for Kubernetes 1.1 release notes
2.100 EDB Postgres for Kubernetes 1.0 release notes
2.101 EDB Postgres for Kubernetes 0.8 release notes
2.102 EDB Postgres for Kubernetes 0.7 release notes
2.103 EDB Postgres for Kubernetes 0.6 release notes
2.104 EDB Postgres for Kubernetes 0.5 release notes
2.105 EDB Postgres for Kubernetes 0.4 release notes
2.106 EDB Postgres for Kubernetes 0.3 release notes
2.107 EDB Postgres for Kubernetes 0.2 release notes
2.108 EDB Postgres for Kubernetes 0.1 release notes
2.109 EDB Postgres for Kubernetes 0.0.1 release notes
3 Before You Start
4 Use cases
5 Architecture
6 Installation and upgrades
7 Quickstart
8 PostgreSQL Configuration
9 Operator configuration
10 Instance pod configuration
11 Examples
13 Bootstrap
14 Importing Postgres databases
15 Security
16 Postgres instance manager
17 Scheduling
18 Resource management
19 Failure Modes
20 Rolling Updates
21 Replication
22 Backup
23 Recovery
24 Appendix A - Backup on volume snapshots
25 Appendix B - Backup on object stores
26 WAL archiving
27 PostgreSQL Role Management
28 Storage
29 Labels and annotations
30 Monitoring
31 Logging
32 Certificates
33 Client TLS/SSL connections
34 Connecting from an application
35 Connection pooling
36 Replica clusters

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 4

338
341
368
370
372
374
377
379
381
382
386
387
389
411
416
427
438
443
456
522
523
530
535
541
543
546
555
559
560
563
566

37 Kubernetes Upgrade and Maintenance
38 EDB Postgres for Kubernetes Plugin
39 Automated failover
40 Fencing
41 Declarative hibernation
42 PostGIS
43 Container Image Requirements
44 Custom Pod Controller
45 Networking
46 Benchmarking
47 Free evaluation
48 License and License keys
49 Red Hat OpenShift
50 Transparent Data Encryption (TDE)
51 Add-ons
52 Operator capability levels
53 Frequently Asked Questions (FAQ)
54 Troubleshooting
55 API Reference - v1.26.0
56 Backup and Recovery
57 Appendix C - Common object stores for backups
58 External Secrets
60 PostgreSQL Database Management
61 Image Catalog
62 Iron Bank
63 Logical Replication
64 PostgreSQL Upgrades
65 Preview Versions
66 EDB private container registries
67 Service Management
68 Tablespaces

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 5

1 EDB Postgres® AI for CloudNativePG™ Cluster

The EDB Postgres® AI for CloudNativePG™ Cluster operator is a fork based on CloudNativePG™. It provides additional value such as compatibility with
Oracle using EDB Postgres Advanced Server and additional supported platforms such as IBM Power and OpenShift. It is designed, developed, and
supported by EDB and covers the full lifecycle of a highly available Postgres database clusters with a primary/standby architecture, using native streaming
replication.

EDB Postgres for Kubernetes was made generally available on February 4, 2021. Earlier versions were made available to selected customers prior to the GA
release.

NoteNote

The operator has been renamed from Cloud Native PostgreSQL. Existing users of Cloud Native PostgreSQL will not experience any change, as the
underlying components and resources have not changed.

Key features in common with CloudNativePG™

Kubernetes API integration for high availability
CloudNativePG™ uses the postgresql.cnpg.io/v1 API version
EDB Postgres for Kubernetes uses the postgresql.k8s.enterprisedb.io/v1 API version

Self-healing through failover and automated recreation of replicas
Capacity management with scale up/down capabilities
Planned switchovers for scheduled maintenance
Read-only and read-write Kubernetes services definitions
Rolling updates for Postgres minor versions and operator upgrades
Continuous backup and point-in-time recovery
Connection Pooling with PgBouncer
Integrated metrics exporter out of the box
PostgreSQL replication across multiple Kubernetes clusters
Separate volume for WAL files

Features unique to EDB Postgres of Kubernetes

Long Term Support
Support on IBM Power and z/Linux through partnership with IBM
Oracle compatibility through EDB Postgres Advanced Sever
Transparent Data Encryption (TDE) through EDB Postgres Advanced Server
Cold backup support with Kasten and Velero/OADP
Generic adapter for third-party Kubernetes backup tools

You can evaluate EDB Postgres for Kubernetes for free as part of a trial subscription. You need a valid EDB subscription to use EDB Postgres for Kubernetes
in production.

NoteNote

Based on the Operator Capability Levels model, users can expect a "Level V - Auto Pilot""Level V - Auto Pilot" set of capabilities from the EDB Postgres for Kubernetes
Operator.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 6

https://cloudnative-pg.io/
https://www.enterprisedb.com/docs/epas/latest/fundamentals/epas_fundamentals/epas_compat_ora_dev_guide/
https://www.enterprisedb.com/docs/tde/latest/

Long Term Support

EDB is committed to declaring a Long Term Support (LTS) version of EDB Postgres for Kubernetes annually. 1.25 is the current LTS version. 1.18 was the
first. Each LTS version will receive maintenance releases and be supported for an additional 12 months beyond the last community release of
CloudNativePG for the same version.

For example, the 1.22 release of CloudNativePG reached End-of-Life on July 24, 2024, for the open source community. Because it was declared an LTS
version of EDB Postgres for Kubernetes, it will be supported for an additional 12 months, until July 24, 2025.

In addition, customers will always have at least 6 months to move between LTS versions. For example, the 1.25 LTS version was released on December 23
2024, giving ample time to users to migrate from the 1.22 LTS ahead of the End-of-life on July 2025.

While we encourage customers to regularly upgrade to the latest version of the operator to take advantage of new features, having LTS versions allows
customers desiring additional stability to stay on the same version for 12-18 months before upgrading.

Licensing

EDB Postgres for Kubernetes works with both PostgreSQL, EDB Postgres Extended and EDB Postgres Advanced server, and is available under the EDB
Limited Use License.

You can evaluate EDB Postgres for Kubernetes for free as part of a trial subscription. You need a valid EDB subscription to use EDB Postgres for Kubernetes
in production.

Supported releases and Kubernetes distributions

For a list of the minor releases of EDB Postgres for Kubernetes that are supported by EDB, please refer to the "Platform Compatibility" page. Here you can
also find which Kubernetes distributions and versions are supported for each of them and the EOL dates.

Multiple architectures

The EDB Postgres for Kubernetes Operator container images support the multi-arch format for the following platforms: linux/amd64 , linux/arm64 ,
linux/ppc64le , linux/s390x .

WarningWarning

EDB Postgres for Kubernetes requires that all nodes in a Kubernetes cluster have the same CPU architecture, thus a hybrid CPU architecture
Kubernetes cluster is not supported. Additionally, EDB supports linux/ppc64le and linux/s390x architectures on OpenShift only.

Supported Postgres versions

The following versions of Postgres are currently supported by version 1.25:

PostgreSQL: 13 - 17
EDB Postgres Advanced: 13 - 17
EDB Postgres Extended: 13 - 17

PostgreSQL and EDB Postgres Advanced are available on the following platforms: linux/amd64 , linux/ppc64le , linux/s390x .
In addition, PostgreSQL is also supported on linux/arm64 .
EDB Postgres Extended is supported only on linux/amd64 .
EDB supports operand images for linux/ppc64le and linux/s390x architectures on OpenShift only.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 7

https://www.enterprisedb.com/limited-use-license
https://www.enterprisedb.com/resources/platform-compatibility#pgk8s

About this guide

Follow the instructions in the "Quickstart" to test EDB Postgres for Kubernetes on a local Kubernetes cluster using Kind, or Minikube.

In case you are not familiar with some basic terminology on Kubernetes and PostgreSQL, please consult the "Before you start" section.

NoteNote

Although the guide primarily addresses Kubernetes, all concepts can be extended to OpenShift as well.

Postgres, PostgreSQL and the Slonik Logo are trademarks or registered trademarks of the PostgreSQL Community Association of Canada, and used with
their permission.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 8

https://www.postgresql.org/about/policies/trademarks/

2 EDB CloudNativePG Cluster release notes

The EDB Postgres for Kubernetes documentation describes the major version of EDB Postgres for Kubernetes, including minor releases and patches. The
release notes provide information on what is new in each release. For new functionality introduced in a minor or patch release, the content also indicates
the release that introduced the feature.

Version Release date Upstream merges

1.26.0 23 May 2025 Upstream 1.26.0

1.25.2 23 May 2025 Upstream 1.25.2

1.25.1 04 Mar 2025 Upstream 1.25.1

1.25.0 23 Dec 2025 Upstream 1.25.0

1.24.4 23 May 2025 Upstream 1.24.4

1.24.3 04 Mar 2025 Upstream 1.24.3

1.24.2 23 Dec 2024 Upstream 1.24.2

1.24.1 18 Oct 2024 Upstream 1.24.1

1.24.0 26 Aug 2024 Upstream 1.24.0

1.23.6 23 Dec 2024 Upstream 1.23.6

1.23.5 18 Oct 2024 Upstream 1.23.5

1.23.4 26 Aug 2024 Upstream 1.23.4

1.23.3 01 Aug 2024 Upstream 1.23.3

1.23.2 13 Jun 2024 Upstream 1.23.2

1.23.1 29 Apr 2024 Upstream 1.23.1

1.23.0 24 Apr 2024 Upstream 1.23.0

1.22.10 23 May 2025 None

1.22.9 04 Mar 2025 None

1.22.8 23 Dec 2024 None

1.22.7 18 Oct 2024 None

1.22.6 26 Aug 2024 Upstream 1.22.6

1.22.5 01 Aug 2024 Upstream 1.22.5

1.22.4 13 Jun 2024 Upstream 1.22.4

1.22.3 24 Apr 2024 Upstream 1.22.3

1.22.2 22 Mar 2024 Upstream 1.22.2

1.22.1 02 Feb 2024 Upstream 1.22.1

1.22.0 22 Dec 2023 Upstream 1.22.0

1.21.6 13 Jun 2024 Upstream 1.21.6

1.21.5 24 Apr 2024 Upstream 1.21.5

1.21.4 22 Mar 2024 Upstream 1.21.4

1.21.3 02 Feb 2024 Upstream 1.21.3

1.21.2 22 Dec 2023 Upstream 1.21.2

1.21.1 08 Nov 2023 Upstream 1.21.1

1.21.0 18 Oct 2023 Upstream 1.21.0

1.20.6 02 Feb 2024 Upstream 1.20.6

1.20.5 22 Dec 2023 Upstream 1.20.5

1.20.4 08 Nov 2023 Upstream 1.20.4

1.20.3 18 Oct 2023 Upstream 1.20.3

1.20.2 27 Jul 2023 Upstream 1.20.2

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 9

https://cloudnative-pg.io/documentation/1.26/release_notes/v1.26/
https://cloudnative-pg.io/documentation/1.25/release_notes/v1.25/
https://cloudnative-pg.io/documentation/1.25/release_notes/v1.25/
https://cloudnative-pg.io/documentation/1.25/release_notes/v1.25/
https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/
https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/
https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/
https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/
https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/
https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/
https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/
https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/
https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/
https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

1.20.1 13 Jun 2023 Upstream 1.20.1

1.20.0 27 Apr 2023 Upstream 1.20.0

1.19.6 08 Nov 2023 Upstream 1.19.6

1.19.5 18 Oct 2023 Upstream 1.19.5

1.19.4 27 Jul 2023 Upstream 1.19.4

1.19.3 13 Jun 2023 Upstream 1.19.3

1.19.2 27 Apr 2023 Upstream 1.19.2

1.19.1 20 Mar 2023 Upstream 1.19.1

1.19.0 14 Feb 2023 Upstream 1.19.0

1.18.13 13 Jun 2024 None

1.18.12 24 Apr 2024 None

1.18.11 22 Mar 2024 None

1.18.10 02 Feb 2024 None

1.18.9 22 Dec 2023 None

1.18.8 08 Nov 2023 None

1.18.7 18 Oct 2023 None

1.18.6 27 Jul 2023 None

1.18.5 13 Jun 2023 Upstream 1.18.5

1.18.4 27 Apr 2023 Upstream 1.18.4

1.18.3 20 Mar 2023 Upstream 1.18.3

1.18.2 14 Feb 2023 Upstream 1.18.2

1.18.1 21 Dec 2022 Upstream 1.18.1

1.18.0 14 Nov 2022 Upstream 1.18.0

1.17.5 20 Mar 2023 Upstream 1.17.5

1.17.4 14 Feb 2023 Upstream 1.17.4

1.17.3 21 Dec 2022 Upstream 1.17.3

1.17.2 14 Nov 2022 Upstream 1.17.2

1.17.1 07 Oct 2022 Upstream 1.17.1

1.17.0 06 Sep 2022 Upstream 1.17.0

1.16.5 21 Dec 2022 Upstream 1.16.4

1.16.4 14 Nov 2022 Upstream 1.16.4

1.16.3 07 Oct 2022 Upstream 1.16.3

1.16.2 06 Sep 2022 Upstream 1.16.2

1.16.1 12 Aug 2022 Upstream 1.16.1

1.16.0 07 Jul 2022 Upstream 1.16.0

1.15.5 07 Oct 2022 Upstream 1.15.5

1.15.4 06 Sep 2022 Upstream 1.15.4

1.15.3 12 Aug 2022 Upstream 1.15.3

1.15.2 07 Jul 2022 Upstream 1.15.2

1.15.1 27 May 2022 Upstream 1.15.1

1.15.0 21 Apr 2022 Upstream 1.15.0

1.14.0 25 Mar 2022 NA

1.13.0 17 Feb 2022 NA

1.12.0 11 Jan 2022 NA

1.11.0 15 Dec 2021 NA

Version Release date Upstream merges

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 10

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/
https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/
https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/
https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/
https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/
https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/
https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/
https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/
https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/
https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/
https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/
https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/
https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16
https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15
https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15
https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15
https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15
https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15
https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15

1.10.0 11 Nov 2021 NA

1.9.2 15 Oct 2021 NA

1.9.1 30 Sep 2021 NA

1.9.0 28 Sep 2021 NA

1.8.0 13 Sep 2021 NA

1.7.1 11 Aug 2021 NA

1.7.0 28 Jul 2021 NA

1.6.0 12 Jul 2021 NA

1.5.1 11 Jun 2021 NA

1.5.0 17 Jun 2021 NA

1.4.0 18 May 2021 NA

1.3.0 23 Apr 2021 NA

1.2.1 06 Apr 2021 NA

1.2.0 31 Mar 2021 NA

1.1.0 03 Mar 2021 NA

1.0.0 04 Feb 2021 NA

0.8.0 29 Jan 2021 NA

0.7.0 31 Dec 2020 NA

0.6.0 04 Dec 2020 NA

0.5.0 20 Nov 2020 NA

0.4.0 05 Nov 2020 NA

0.3.0 25 Sep 2020 NA

0.2.0 11 Aug 2020 NA

0.1.0 03 Apr 2020 NA

0.0.1 05 Mar 2020 NA

Version Release date Upstream merges

Versions prior to 1.0.0Versions prior to 1.0.0

EDB Postgres for Kubernetes was made generally available on February 4, 2021. Earlier versions were made available to selected customers prior
to the GA release.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 11

2.1 EDB CloudNativePG Cluster 1.26.0 release notes

Released: 23 May 2025

This release of EDB CloudNativePG Cluster includes the following:

Changes

Description Addresses

Merged with community CloudNativePG 1.26.0 upstream release. See the community release notes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 12

https://cloudnative-pg.io/documentation/1.26/release_notes/v1.26/

2.2 EDB CloudNativePG Cluster 1.25.2 release notes

Released: 23 May 2025

This release of EDB CloudNativePG Cluster includes the following:

Changes

Description Addresses

Merged with community CloudNativePG 1.25.2 upstream release. See the community release notes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 13

https://cloudnative-pg.io/documentation/1.25/release_notes/v1.25/

2.3 EDB Postgres for Kubernetes 1.25.1 release notes

Released: 04 Mar 2025

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.25.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 14

https://cloudnative-pg.io/documentation/1.25/release_notes/v1.25/

2.4 EDB Postgres for Kubernetes 1.25.0 release notes

Released: 23 Dec 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.25.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 15

https://cloudnative-pg.io/documentation/1.25/release_notes/v1.25/

2.5 EDB CloudNativePG Cluster 1.24.4 release notes

Released: 23 May 2025

This release of EDB CloudNativePG Cluster includes the following:

Changes

Description Addresses

Merged with community CloudNativePG 1.24.4 upstream release. See the community release notes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 16

https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/

2.6 EDB Postgres for Kubernetes 1.24.3 release notes

Released: 04 Mar 2025

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.24.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 17

https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/

2.7 EDB Postgres for Kubernetes 1.24.2 release notes

Released: 23 Dec 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.24.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 18

https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/

2.8 EDB Postgres for Kubernetes 1.24.1 release notes

Released: 18 Oct 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.24.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 19

https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/

2.9 EDB Postgres for Kubernetes 1.24.0 release notes

Released: 26 Aug 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.24.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 20

https://cloudnative-pg.io/documentation/1.24/release_notes/v1.24/

2.10 EDB Postgres for Kubernetes 1.23.6 release notes

Released: 23 Dec 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.6. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 21

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.11 EDB Postgres for Kubernetes 1.23.5 release notes

Released: 18 Oct 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 22

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.12 EDB Postgres for Kubernetes 1.23.4 release notes

Released: 26 Aug 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 23

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.13 EDB Postgres for Kubernetes 1.23.3 release notes

Released: 01 Aug 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 24

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.14 EDB Postgres for Kubernetes 1.23.2 release notes

Released: 13 Jun 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 25

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.15 EDB Postgres for Kubernetes 1.23.1 release notes

Released: 29 Apr 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 26

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.16 EDB Postgres for Kubernetes 1.23.0 release notes

Released: 24 Apr 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.23.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 27

https://cloudnative-pg.io/documentation/1.23/release_notes/v1.23/

2.17 EDB CloudNativePG Cluster 1.22.10 release notes

Released: 23 May 2025

EDB Postgres for Kubernetes version 1.22.10 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

WarningWarning

A new LTS release, version 1.25.2, is now available! Please note that support for 1.22 will officially end on July 2025.

We recommend starting your upgrade planning now to transition smoothly to the 1.25 LTS release.

This release of EDB CloudNativePG Cluster includes the following:

Enhancements

Description Addresses

Implemented the k8s.enterprisedb.io/validation annotation

...enabling users to disable the validation webhook on EDB Postgres for Kubernetes-managed resources. Use with caution, as this allows
unrestricted changes.

#7196

Added support for collecting `pg_stat_wal` metrics in PostgreSQL 18 #7005

Added support for LZ4, XZ, and Zstandard compression methods

...when archiving WAL files via Barman Cloud (deprecated). #7151

Security Fixes

Description Addresses

Set imagePullPolicy to Always for the operator deployment

...to ensure that images are always pulled from the registry, reducing the risk of using outdated or potentially unsafe local
images.

#7250

Changes

Description Addresses

Updated the default PostgreSQL version to 17.5 for new cluster definitions. #7556

Updated the default PgBouncer version to **1.24.1** for new `Pooler` deployments. #7399

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 28

https://github.com/cloudnative-pg/cloudnative-pg/pull/7196
https://github.com/cloudnative-pg/cloudnative-pg/pull/7005
https://github.com/cloudnative-pg/cloudnative-pg/pull/7151
https://github.com/cloudnative-pg/cloudnative-pg/pull/7250
https://github.com/cloudnative-pg/cloudnative-pg/pull/7556
https://github.com/cloudnative-pg/cloudnative-pg/pull/7399

Bug Fixes

Description Addresses

Fixed native replication slot synchronization and logical replication failover for PostgreSQL 17

...by appending the dbname parameter to primary_conninfo in replica configurations. #7298

Improved backup efficiency by introducing a fail-fast mechanism in WAL archiving

...allowing quicker detection of unexpected primary demotion and avoiding unnecessary retries. #7483

Fixed an off-by-one error in parallel WAL archiving

...that could cause one extra worker process to be spawned beyond the requested number. #7389

Resolved a race condition that caused the operator to perform two switchovers when updating the PostgreSQL configuration. #6991

Corrected the PodMonitor configuration by adjusting the matchLabels scope for the targeted pooler and cluster pods.

Previously, the matchLabels were too broad, inadvertently inheriting labels from the cluster and leading to data collection from
unintended targets.

#7063

Added a webhook warning for clusters with a missing unit (e.g., MB, GB) in the shared_buffers configuration.

This will become an error in future releases. Users should update their configurations to include explicit units (e.g., 512MB instead of
512).

#7160

`cnp` plugin: ensured that the primary Pod is recreated during an imperative restart when `primaryUpdateMethod` is set to `restart`,
aligning its definition with the replicas.

#7122

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 29

https://github.com/cloudnative-pg/cloudnative-pg/pull/7298
https://github.com/cloudnative-pg/cloudnative-pg/pull/7483
https://github.com/cloudnative-pg/cloudnative-pg/pull/7389
https://github.com/cloudnative-pg/cloudnative-pg/pull/6991
https://github.com/cloudnative-pg/cloudnative-pg/pull/7063
https://github.com/cloudnative-pg/cloudnative-pg/pull/7160
https://github.com/cloudnative-pg/cloudnative-pg/pull/7122

2.18 EDB Postgres for Kubernetes 1.22.9 release notes

Released: 04 Mar 2025

EDB Postgres for Kubernetes version 1.22.9 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

WarningWarning

A new LTS release, version 1.25.1, is now available! Please note that support for 1.22 will officially end on July 2025.

We recommend starting your upgrade planning now to transition smoothly to the 1.25 LTS release.

This release of EDB Postgres for Kubernetes includes the following:

Enhancements

Introduced a startup probe for the operator to enhance reliability and prevent premature liveness probe failures during initialization. (#7008)
Added support for using the -r service with the Pooler. (#6868)
Introduced an optional --ttl flag for the pgbench plugin, enabling automatic deletion of completed jobs after a user-defined duration. (#6701)
Updated the default PostgreSQL version to 17.4 for new cluster definitions. (#6960)

Security

The operator image build process has been enhanced to strengthen security and transparency. Images are now signed with cosign , and OCI
attestations are generated, incorporating the Software Bill of Materials (SBOM) and provenance data. Additionally, OCI annotations have been
added to improve traceability and ensure the integrity of the images.

Bug Fixes

Fixed inconsistent behavior in default probe knob values when .spec.probes is defined, ensuring users can override all settings, including
failureThreshold . If unspecified in the startup probe, failureThreshold is now correctly derived from .spec.startupDelay /
periodSeconds (default: 10 , now overridable). The same logic applies to liveness probes via .spec.livenessProbeTimeout . (#6656)
Fixed an issue where WAL metrics were unavailable after an instance restart until a configuration change was applied. (#6816)
Fixed an issue in monolithic database import where role import was skipped if no roles were specified. (#6646)
Added support for new metrics introduced in PgBouncer 1.24. (#6630)
Improved handling of replication-sensitive parameter reductions by ensuring timely reconciliation after primary server restarts. (#6440)
Ensured override.conf is consistently included in postgresql.conf during replica cluster bootstrapping, preventing replication failures
due to missing configuration settings. (#6808)
Ensured override.conf is correctly initialized before invoking pg_rewind to prevent failures during primary role changes. (#6670)
Enhanced webhook responses to return both warnings and errors when applicable, improving diagnostic accuracy. (#6579)
Ensured the operator version is correctly reconciled. (#6496)
Improved PostgreSQL version detection by using a more precise check of the data directory. (#6659)
Volume Snapshot Backups:

Fixed an issue where unused backup connections were not properly cleaned up. (#6882)
Ensured the instance manager closes stale PostgreSQL connections left by failed volume snapshot backups. (#6879)
Prevented the operator from starting a new volume snapshot backup while another is already in progress. (#6890)

cnp plugin:
Restored functionality of the promote plugin command. (#6476)
Enhanced kubectl cnp report --logs <cluster> to collect logs from all containers, including sidecars. (#6636)
Ensured pgbench jobs can run when a Cluster uses an ImageCatalog . (#6868)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 30

https://github.com/cloudnative-pg/cloudnative-pg/pull/7008
https://github.com/cloudnative-pg/cloudnative-pg/pull/6868
https://github.com/cloudnative-pg/cloudnative-pg/pull/6701
https://github.com/cloudnative-pg/cloudnative-pg/pull/6960
https://github.com/cloudnative-pg/cloudnative-pg/pull/6656
https://github.com/cloudnative-pg/cloudnative-pg/pull/6816
https://github.com/cloudnative-pg/cloudnative-pg/pull/6646
https://github.com/cloudnative-pg/cloudnative-pg/pull/6630
https://github.com/cloudnative-pg/cloudnative-pg/pull/6440
https://github.com/cloudnative-pg/cloudnative-pg/pull/6808
https://github.com/cloudnative-pg/cloudnative-pg/pull/6670
https://github.com/cloudnative-pg/cloudnative-pg/pull/6579
https://github.com/cloudnative-pg/cloudnative-pg/pull/6496
https://github.com/cloudnative-pg/cloudnative-pg/pull/6659
https://github.com/cloudnative-pg/cloudnative-pg/pull/6882
https://github.com/cloudnative-pg/cloudnative-pg/pull/6879
https://github.com/cloudnative-pg/cloudnative-pg/pull/6890
https://github.com/cloudnative-pg/cloudnative-pg/pull/6476
https://github.com/cloudnative-pg/cloudnative-pg/pull/6636
https://github.com/cloudnative-pg/cloudnative-pg/pull/6868

Technical Enhancements

Added support for Kubernetes client-gen , enabling automated generation of Go clients for all EDB Postgres for Kubernetes CRDs. (#6695)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 31

https://github.com/cloudnative-pg/cloudnative-pg/pull/6695

2.19 EDB Postgres for Kubernetes 1.22.8 release notes

Released: 23 Dec 2024

EDB Postgres for Kubernetes version 1.22.8 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

WarningWarning

A new LTS release, version 1.25.0, is now available! Please note that support for 1.22 will officially end on July 2025.

We recommend starting your upgrade planning now to transition smoothly to the 1.25 LTS release.

This release of EDB Postgres for Kubernetes includes the following:

Enhancements

Enable customization of startup, liveness, and readiness probes through the .spec.probes stanza. (#6266)
Add the cnpg.io/userType label to secrets generated for predefined users, specifically superuser and app . (#4392)
Improved validation for the spec.schedule field in ScheduledBackups, raising warnings for potential misconfigurations. (#5396)
cnpg plugin:

Honor the User-Agent header in HTTP requests with the API server. (#6153)

Bug Fixes

Ensure the former primary flushes its WAL file queue to the archive before re-synchronizing as a replica, reducing recovery times and enhancing data
consistency during failovers. (#6141)
Clean the WAL volume along with the PGDATA volume during bootstrap. (#6265)
Update the operator to set the cluster phase to Unrecoverable when all previously generated PersistentVolumeClaims are missing.
(#6170)
Fix the parsing of the synchronous_standby_names GUC when .spec.postgresql.synchronous.method is set to first . (#5955)
Resolved a potential race condition when patching certain conditions in CRD statuses, improving reliability in concurrent updates. (#6328)
Correct role changes to apply at the transaction level instead of the database context. (#6064)
Remove the primary_slot_name definition from the override.conf file on the primary to ensure it is always empty. (#6219)
Configure libpq environment variables, including PGHOST , in PgBouncer pods to enable seamless access to the pgbouncer virtual database
using psql from within the container. (#6247)
Prevent panic during recovery from an external server without proper backup configuration. (#6300)
Resolved a key collision issue in structured logs, where the name field was inconsistently used to log two distinct values. (#6324)
Ensure proper quoting of the inRoles field in SQL statements to prevent syntax errors in generated SQL during role management. (#6346)
cnpg plugin:

Ensure the kubectl context is properly passed in the psql command. (#6257)
Avoid displaying physical backups block when empty with status command. (#5998)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 32

https://github.com/cloudnative-pg/cloudnative-pg/pull/6266
https://github.com/cloudnative-pg/cloudnative-pg/pull/4392
https://github.com/cloudnative-pg/cloudnative-pg/pull/5396
https://github.com/cloudnative-pg/cloudnative-pg/pull/6153
https://github.com/cloudnative-pg/cloudnative-pg/pull/6141
https://github.com/cloudnative-pg/cloudnative-pg/pull/6265
https://github.com/cloudnative-pg/cloudnative-pg/pull/6170
https://github.com/cloudnative-pg/cloudnative-pg/pull/5955
https://github.com/cloudnative-pg/cloudnative-pg/pull/6328
https://github.com/cloudnative-pg/cloudnative-pg/pull/6064
https://github.com/cloudnative-pg/cloudnative-pg/pull/6219
https://github.com/cloudnative-pg/cloudnative-pg/pull/6247
https://github.com/cloudnative-pg/cloudnative-pg/pull/6300
https://github.com/cloudnative-pg/cloudnative-pg/pull/6324
https://github.com/cloudnative-pg/cloudnative-pg/pull/6346
https://github.com/cloudnative-pg/cloudnative-pg/pull/6257
https://github.com/cloudnative-pg/cloudnative-pg/pull/5998

2.20 EDB Postgres for Kubernetes 1.22.7 release notes

Released: 18 Oct 2024

EDB Postgres for Kubernetes version 1.22.7 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

This release of EDB Postgres for Kubernetes includes the following:

Enhancements:

Remove the use of pg_database_size from the status probe, as it caused high resource utilization by scanning the entire PGDATA directory to
compute database sizes. The kubectl status plugin will now rely on du to provide detailed size information retrieval (#5689).
Add the ability to configure the full_page_writes parameter in PostgreSQL. This setting defaults to on , in line with PostgreSQL's
recommendations (#5516).
Plugin:

Add the logs pretty command in the cnp plugin to read a log stream from standard input and output a human-readable format, with
options to filter log entries (#5770)
Enhance the status command by allowing multiple -v options to increase verbosity for more detailed output (#5765).
Add support for specifying a custom Docker image using the --image flag in the pgadmin4 plugin command, giving users control over
the Docker image used for pgAdmin4 deployments (#5515).

Fixes:

Ensure that replica PodDisruptionBudgets (PDB) are removed when scaling down to two instances, enabling easier maintenance on the node
hosting the replica (#5487).
Prioritize full rollout over inplace restarts (#5407).
Fix an issue that could lead to double failover in cases of lost connectivity (#5788).
Correctly set the TMPDIR and PSQL_HISTORY environment variables for pods and jobs, improving temporary file and history management
(#5503).
Plugin:

Resolve a race condition in the logs cluster command (#5775).
Display the potential sync status in the status plugin (#5533).
Fix the issue where pods deployed by the pgadmin4 command didn’t have a writable home directory (#5800).

Supported versions

PostgreSQL 17 (PostgreSQL 17.0 is the default image)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 33

2.21 EDB Postgres for Kubernetes 1.22.6 release notes

Released: 26 Aug 2024

This release of EDB Postgres for Kubernetes includes the following:

Features

Configuration of Pod Disruption Budgets (PDB)Configuration of Pod Disruption Budgets (PDB): Introduced the .spec.enablePDB field to disable PDBs on the primary instance, allowing proper
eviction of the pod during maintenance operations. This is particularly useful for single-instance deployments. This feature is intended to replace the
node maintenance window feature.

Enhancements

cnp plugin updatescnp plugin updates:
Enhance the install generate command by adding a --control-plane option, allowing deployment of the operator on control-plane nodes by
setting node affinity and tolerations (#5271).
Enhance the destroy command to delete also any job related to the target instance (#5298).

Fixes

Synchronous replication self-healing checks now exclude terminated pods, focusing only on active and functional pods (#5210).
The instance manager will now terminate all existing operator-related replication connections following a role change in a replica cluster (#5209).
Allow setting smartShutdownTimeout to zero, enabling immediate fast shutdown and bypassing the smart shutdown process when required
(#5347).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 34

2.22 EDB Postgres for Kubernetes 1.22.5 release notes

Released: 01 Aug 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.22.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 35

https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/

2.23 EDB Postgres for Kubernetes 1.22.4 release notes

Released: 13 Jun 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.22.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 36

https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/

2.24 EDB Postgres for Kubernetes 1.22.3 release notes

Released: 24 Apr 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.22.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 37

https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/

2.25 EDB Postgres for Kubernetes 1.22.2 release notes

Released: 22 Mar 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.22.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 38

https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/

2.26 EDB Postgres for Kubernetes 1.22.1 release notes

Released: 02 Feb 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.22.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 39

https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/

2.27 EDB Postgres for Kubernetes 1.22.0 release notes

Released: 22 Dec 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.22.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 40

https://cloudnative-pg.io/documentation/1.22/release_notes/v1.22/

2.28 EDB Postgres for Kubernetes 1.21.6 release notes

Released: 13 Jun 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.6. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 41

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.29 EDB Postgres for Kubernetes 1.21.5 release notes

Released: 23 Apr 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 42

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.30 EDB Postgres for Kubernetes 1.21.4 release notes

Released: 22 Mar 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 43

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.31 EDB Postgres for Kubernetes 1.21.3 release notes

Released: 02 Feb 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 44

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.32 EDB Postgres for Kubernetes 1.21.2 release notes

Released: 22 Dec 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 45

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.33 EDB Postgres for Kubernetes 1.21.1 release notes

Released: 08 Nov 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 46

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.34 EDB Postgres for Kubernetes 1.21.0 release notes

Released: 18 Oct 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.21.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 47

https://cloudnative-pg.io/documentation/1.21/release_notes/v1.21/

2.35 EDB Postgres for Kubernetes 1.20.6 release notes

Released: 02 Feb 2024

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.6. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 48

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.36 EDB Postgres for Kubernetes 1.20.5 release notes

Released: 22 Dec 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 49

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.37 EDB Postgres for Kubernetes 1.20.4 release notes

Released: 08 Nov 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 50

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.38 EDB Postgres for Kubernetes 1.20.3 release notes

Released: 18 Oct 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 51

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.39 EDB Postgres for Kubernetes 1.20.2 release notes

Released: 27 Jul 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 52

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.40 EDB Postgres for Kubernetes 1.20.1 release notes

Released: 13 Jun 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 53

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.41 EDB Postgres for Kubernetes 1.20.0 release notes

Released: 27 Apr 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.20.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 54

https://cloudnative-pg.io/documentation/1.20/release_notes/v1.20/

2.42 EDB Postgres for Kubernetes 1.19.6 release notes

Released: 08 Nov 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.19.6. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 55

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/

2.43 EDB Postgres for Kubernetes 1.19.5 release notes

Released: 18 Oct 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.19.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 56

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/

2.44 EDB Postgres for Kubernetes 1.19.4 release notes

Released: 27 Jul 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.19.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 57

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/

2.45 EDB Postgres for Kubernetes 1.19.3 release notes

Released: 13 Jun 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.19.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 58

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/

2.46 EDB Postgres for Kubernetes 1.19.2 release notes

Released: 27 Apr 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.19.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 59

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/

2.47 EDB Postgres for Kubernetes 1.19.1 release notes

Released: 20 Mar 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.19.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 60

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/

2.48 EDB Postgres for Kubernetes 1.19.0 release notes

Released: 14 Feb 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.19.0. See the community Release Notes.

Feature Support for Transparent Data Encryption (TDE) with EDB Postgres Advanced Server 15. TDE encrypts, transparently to the user, any user
data stored in the database system.

Feature New external backup adaptor to provide a generic way to integrate EDB Postgres for Kubernetes in a third-party tool for backups. See
External Backup Adapter for more information.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 61

https://cloudnative-pg.io/documentation/1.19/release_notes/v1.19/
https://www.enterprisedb.com/docs/tde/latest

2.49 EDB Postgres for Kubernetes 1.18.13 release notes

Released: 13 Jun 2024

EDB Postgres for Kubernetes version 1.18.13 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

WarningWarning

This is expected to be the last release in the 1.18.X series. Users are encouraged to update to a newer minor version soon.

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Enhancement Enabled the configuration of the liveness probe timeout via the .spec.livenessProbeTimeout option (#4719)

Change Default operand image set to PostgreSQL 16.3 (#4584)

Change Removed all RBAC requirements on namespace objects (#4753)

Bug fix Prevented fenced instances from entering an unnecessary loop and consuming all available CPU (#4625)

Bug fix Resolved an issue where the instance manager on the primary would indefinitely wait for the instance to start after encountering a
failure following a stop operation (#4434)

Bug fix Fixed a panic in the backup controller that occurred when pod container statuses were missing (#4765)

Bug fix Prevented unnecessary shutdown of the instance manager (#4670)

Bug fix Prevented unnecessary reloads of PostgreSQL configuration when unchanged (#4531)

Bug fix Prevented unnecessary reloads of the ident map by ensuring a consistent and unique method of writing its content (#4648)

Bug fix Avoided conflicts during phase registration by patching the status of the resource instead of updating it (#4637)

Bug fix Implemented a timeout when restarting PostgreSQL and lifting fencing (#4504)

Bug fix Ensured that a replica cluster is restarted after promotion to properly set the archive mode (#4399)

Bug fix Ensured correct parsing of the additional rows field returned when the pgaudit.log_rows option was enabled, preventing audit
logs from being incorrectly routed to the normal log stream (#4394)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 62

https://github.com/cloudnative-pg/cloudnative-pg/pull/4719
https://github.com/cloudnative-pg/cloudnative-pg/pull/4584
https://github.com/cloudnative-pg/cloudnative-pg/pull/4753
https://github.com/cloudnative-pg/cloudnative-pg/pull/4625
https://github.com/cloudnative-pg/cloudnative-pg/pull/4434
https://github.com/cloudnative-pg/cloudnative-pg/pull/4765
https://github.com/cloudnative-pg/cloudnative-pg/pull/4670
https://github.com/cloudnative-pg/cloudnative-pg/pull/4531
https://github.com/cloudnative-pg/cloudnative-pg/pull/4648
https://github.com/cloudnative-pg/cloudnative-pg/pull/4637
https://github.com/cloudnative-pg/cloudnative-pg/pull/4504
https://github.com/cloudnative-pg/cloudnative-pg/pull/4399
https://github.com/cloudnative-pg/cloudnative-pg/pull/4394

2.50 EDB Postgres for Kubernetes 1.18.12 release notes

Released: 24 Apr 2024

EDB Postgres for Kubernetes version 1.18.12 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Enhancement Added upgrade process from 1.18.x LTS to 1.22.x LTS

Enhancement Documentation for Kubernetes 1.29.x or above (#3729)

Enhancement Ensure pods with no ownership are deleted during cluster restore (#4141)

Bug fix Properly handle LSN sorting when is empty on a replica (#4283)

Bug fix Avoids stopping reconciliation loop when there is no instance status available (#4132)

Bug fix Waits for elected replica to be in streaming mode before a switchover (#4288)

Bug fix Allow backup hooks to be called while using Velero backup

Bug fix Waits for the Restic init container to be completed

Security Updated all Go dependencies to fix any latest security issues

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 63

https://github.com/cloudnative-pg/cloudnative-pg/pull/3729
https://github.com/cloudnative-pg/cloudnative-pg/pull/4141
https://github.com/cloudnative-pg/cloudnative-pg/pull/4283
https://github.com/cloudnative-pg/cloudnative-pg/pull/4132
https://github.com/cloudnative-pg/cloudnative-pg/pull/4288

2.51 EDB Postgres for Kubernetes 1.18.11 release notes

Released: 22 Mar 2024

EDB Postgres for Kubernetes version 1.18.11 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Enhancement Allow customization of the wal_level GUC in PostgreSQL (#4020).

Enhancement Added the cnpg.io/skipWalArchiving annotation to disable WAL archiving when set to enabled (#4055).

Enhancement Enriched the cnpg plugin for kubectl with the publication and subscription command groups to imperatively set up
PostgreSQL native logical replication (#4052).

Enhancement Allow customization of CERTIFICATE_DURATION and EXPIRING_CHECK_THRESHOLD for automated management of TLS
certificates handled by the operator (#3686).

Enhancement Now retrieves the correct architecture's binary from the corresponding catalog in the running operator image during in-place updates,
enabling the operator to inject the correct binary into any Pod with a supported architecture (#3840).

Security Now uses Role instead of ClusterRole for operator permissions in OLM, requiring fewer privileges when installed on a per-
namespace basis (#3855, #3990).

Security Now enforces fully-qualified object names in SQL queries for the PgBouncer pooler (#4080).

Bug fix Now properly synchronizes PVC group labels with those on the pods, a critical aspect when all pods are deleted and the operator
needs to decide which Pod to recreate first (#3930).

Bug fix Now disables wal_sender_timeout when cloning a replica to prevent timeout errors due to slow connections (#4080).

Bug fix Now ensures that backups are ready before initiating recovery bootstrap procedures, preventing an error condition where recovery
with incomplete backups could enter an error loop (#3663).

Bug fix Resolve a corner case in hibernation where the instance pod has been deleted, but the cluster status still has the hibernation
condition set to false (#3970).

Bug fix Correctly detect Google Cloud capabilities for Barman Cloud (#3931).

Update Set the default operand image to PostgreSQL 16.2 (#3823).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 64

https://github.com/cloudnative-pg/cloudnative-pg/pull/4020
https://github.com/cloudnative-pg/cloudnative-pg/pull/4055
https://github.com/cloudnative-pg/cloudnative-pg/pull/4052
https://github.com/cloudnative-pg/cloudnative-pg/pull/3686
https://github.com/cloudnative-pg/cloudnative-pg/pull/3840
https://github.com/cloudnative-pg/cloudnative-pg/pull/3855
https://github.com/cloudnative-pg/cloudnative-pg/pull/3990
https://github.com/cloudnative-pg/cloudnative-pg/pull/4080
https://github.com/cloudnative-pg/cloudnative-pg/pull/3930
https://github.com/cloudnative-pg/cloudnative-pg/pull/4080
https://github.com/cloudnative-pg/cloudnative-pg/pull/3663
https://github.com/cloudnative-pg/cloudnative-pg/pull/3970
https://github.com/cloudnative-pg/cloudnative-pg/pull/3931
https://github.com/cloudnative-pg/cloudnative-pg/pull/3823

2.52 EDB Postgres for Kubernetes 1.18.10 release notes

Released: 02 Feb 2024

EDB Postgres for Kubernetes version 1.18.10 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Enhancement Tailor ephemeral volume storage in a Postgres cluster using a claim template through the ephemeralVolumeSource option
(#3678).

Enhancement
Introduce the pgadmin4 command in the cnp plugin for kubectl , providing a straightforward method to demonstrate
connecting to a given database cluster and navigate its content in a local environment such as kind - for evaluation purposes only
(#3701).

Enhancement Allow customization of PostgreSQL's ident map file via the .spec.postgresql.pg_ident stanza, through a list of user name
maps (#3534).

Bug fix
Prevent an unrecoverable issue with pg_rewind failing due to postgresql.auto.conf being read-only on clusters where the
ALTER SYSTEM SQL command is disabled - the default (#3728).

Bug fix Reduce the risk of disk space shortage when using the import facility of the initdb bootstrap method, by disabling the durability
settings in the PostgreSQL instance for the duration of the import process (#3743).

Bug fix Avoid pod restart due to erroneous resource quantity comparisons, e.g. "1 != 1000m" (#3706).

Bug fix Properly escape reserved characters in pgpass connection fields (#3713).

Bug fix
Prevent systematic rollout of pods due to considering zero and nil different values in
.spec.projectedVolumeTemplate.sources (#3647).

Bug fix
Ensure configuration coherence by pruning from postgresql.auto.conf any options now incorporated into
override.conf (#3773).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 65

https://github.com/cloudnative-pg/cloudnative-pg/pull/3678
https://github.com/cloudnative-pg/cloudnative-pg/pull/3701
https://github.com/cloudnative-pg/cloudnative-pg/pull/3534
https://github.com/cloudnative-pg/cloudnative-pg/pull/3728
https://github.com/cloudnative-pg/cloudnative-pg/pull/3743
https://github.com/cloudnative-pg/cloudnative-pg/pull/3706
https://github.com/cloudnative-pg/cloudnative-pg/pull/3713
https://github.com/cloudnative-pg/cloudnative-pg/pull/3647
https://github.com/cloudnative-pg/cloudnative-pg/pull/3773

2.53 EDB Postgres for Kubernetes 1.18.9 release notes

Released: 22 Dec 2023

EDB Postgres for Kubernetes version 1.18.9 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of
CloudNativePG.

This release of EDB Postgres for Kubernetes includes the following:

Type Subsystem Description

Security
By default, TLSv1.3 is now enforced on all PostgreSQL 12 or higher installations. Additionally, users can configure the
ssl_ciphers , ssl_min_protocol_version , and ssl_max_protocol_version GUCs (#3408).

Security Integrated Docker image scanning with Dockle to enhance security measures.

Defaults Default operand image is now PostgreSQL 16.1 (#3270).

Enhancement Improved reconciliation of external clusters (#3533).

Enhancement Introduced the ability to enable/disable the ALTER SYSTEM command (#3535).

Enhancement
Added support for Prometheus' dynamic relabeling through the podMonitorMetricRelabelings and
podMonitorRelabelings options in the .spec.monitoring stanza of the Cluster and Pooler

resources (#3075).

Enhancement Eliminated the use of the PGPASSFILE environment variable when establishing a network connection to PostgreSQL
(#3522).

Enhancement Improved cnp report plugin command by collecting a cluster's PVCs (#3357).

Enhancement Connection
pooler

Scaling down instances of a Pooler resource to 0 is now possible (#3517).

Enhancement Connection
pooler

Added the k8s.enterprisedb.io/podRole label with a value of 'pooler' to every pooler deployment,
differentiating them from instance pods (#3396).

Bug fix Reconciled metadata, annotations, and labels of PodDisruptionBudget resources (#3312 and #3434).

Bug fix Reconciled the metadata of the managed credential secrets (#3316).

Bug fix Disabled wal_sender_timeout when joining through pg_basebackup (#3586).

Bug fix Secrets labeled cnpg.io/reload=true and used by external clusters are now reloaded when they change
(#3565).

Bug fix Connection
pooler

Ensured the controller watches all secrets owned by a Pooler resource (#3428).

Bug fix Connection
pooler

Reconciled RoleBinding for Pooler resources (#3391).

Bug fix Connection
pooler

Reconciled imagePullSecret for Pooler resources (#3389).

Bug fix Connection
pooler

Reconciled the service of a Pooler and addition of the required labels (#3349).

Bug fix Connection
pooler

Extended Pooler labels to the deployment as well, not just the pods (#3350).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 66

https://github.com/cloudnative-pg/cloudnative-pg/pull/3408
https://github.com/cloudnative-pg/cloudnative-pg/pull/3270
https://github.com/cloudnative-pg/cloudnative-pg/pull/3533
https://github.com/cloudnative-pg/cloudnative-pg/pull/3535
https://github.com/cloudnative-pg/cloudnative-pg/pull/3075
https://github.com/cloudnative-pg/cloudnative-pg/pull/3522
https://github.com/cloudnative-pg/cloudnative-pg/pull/3357
https://github.com/cloudnative-pg/cloudnative-pg/pull/3517
https://github.com/cloudnative-pg/cloudnative-pg/pull/3396
https://github.com/cloudnative-pg/cloudnative-pg/pull/3312
https://github.com/cloudnative-pg/cloudnative-pg/pull/3434
https://github.com/cloudnative-pg/cloudnative-pg/pull/3316
https://github.com/cloudnative-pg/cloudnative-pg/pull/3586
https://github.com/cloudnative-pg/cloudnative-pg/pull/3565
https://github.com/cloudnative-pg/cloudnative-pg/pull/3428
https://github.com/cloudnative-pg/cloudnative-pg/pull/3391
https://github.com/cloudnative-pg/cloudnative-pg/pull/3389
https://github.com/cloudnative-pg/cloudnative-pg/pull/3349
https://github.com/cloudnative-pg/cloudnative-pg/pull/3350

2.54 EDB Postgres for Kubernetes 1.18.8 release notes

Released: 08 Nov 2023

EDB Postgres for Kubernetes version 1.8.8 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of CloudNativePG.

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Enhancement Enhanced the status command of the cnp plugin for kubectl with progress information on active streaming base
backups.

Enhancement Allowed the configuration of max_prepared_statements with the pgBouncer Pooler resource.

Technical
Enhancement

Use extended query protocol for PostgreSQL in the instance manager.

Bug fix Suspend WAL archiving during a switchover and resume it when it is completed.

Bug fix Ensured that the instance manager always uses synchronous_commit = local when managing the PostgreSQL cluster.

Bug fix Custom certificates for streaming replication user through .spec.certificates.replicationTLSSecret are now
working.

Bug fix Set the k8s.enterprisedb.io/cluster label to the Pooler pods.

Change
Stopped using the postgresql.auto.conf file inside PGDATA to control Postgres replication settings, and replace it with a
file named override.conf .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 67

2.55 EDB Postgres for Kubernetes 1.18.7 release notes

Released: 18 Oct 2023

EDB Postgres for Kubernetes version 1.8.7 is an LTS release of EDB Postgres for Kubernetes; there is no corresponding upstream release of CloudNativePG.

Highlights of EDB Postgres for Kubernetes 1.8.7

Changed the default value of stopDelay to 1800 seconds instead of 30 seconds
Introduced a new parameter, called smartShutdownTimeout , to control the window of time reserved for the smart shutdown of Postgres to
complete; the general formula to compute the overall timeout to stop Postgres is max(stopDelay - smartShutdownTimeout, 30)
Changed the default value of startDelay to 3600, instead of 30 seconds
Replaced the livenessProbe initial delay with a more proper Kubernetes startup probe to deal with the start of a Postgres server
Changed the default value of switchoverDelay to 3600 seconds instead of 40000000 seconds

Additionally, this release of EDB Postgres for Kubernetes includes the following:

Type Description

Security fix Added a default seccompProfile to the operator deployment.

Enhancement Introduced the k8s.enterprisedb.io/coredumpFilter annotation to control the content of a core dump generated in
the unlikely event of a PostgreSQL crash, by default set to exclude shared memory segments from the dump.

Enhancement Allowed configuration of ephemeral-storage limits for the shared memory and temporary data ephemeral volumes.

Enhancement Validation of resource limits and requests through the webhook.

Enhancement Ensure that PostgreSQL's shared_buffers are coherent with the pods' allocated memory resources.

Enhancement Added uri and jdbc-uri fields in the credential secrets to facilitate developers when connecting their applications to the
database.

Enhancement Added a new phase, Waiting for the instances to become active , for finer control of a cluster's state waiting for
the replicas to be ready.

Enhancement Improved detection of Pod rollout conditions through the podSpec annotation.

Enhancement Added primary timestamp and uptime to the kubectl plugin's status command.

Technical
enhancement

Replaced k8s-api-docgen with gen-crd-api-reference-docs to automatically build the API reference
documentation.

Bug fix Ensure that the primary instance is always recreated first by prioritizing ready PVCs with a primary role.

Bug fix Honor the k8s.enterprisedb.io/skipEmptyWalArchiveCheck annotation during recovery to bypass the check for an
empty WAL archive.

Bug fix prevent a cluster from being stuck when the PostgreSQL server is down but the pod is up on the primary.

Bug fix Avoid treating the designated primary in a replica cluster as a regular HA replica when replication slots are enabled.

Bug fix Reconcile services every time the selectors change or when labels/annotations need to be changed.

Bug fix Default to app for both the owner and database during recovery bootstrap.

Bug fix Avoid write-read concurrency on cached cluster.

Bug fix Remove empty items, make them unique and sort in the ResourceName sections of the generated roles.

Bug fix Ensure that the ContinuousArchiving condition is properly set to 'failed' in case of errors.

Bug fix Reconcile PodMonitor labels and annotations .

Bug fix Fixed backup failure due to missing RBAC resourceNames on the Role object.

Observability Added TCP port label to default pg_stat_replication metric.

Observability Fixed the pg_wal_stat default metric for Prometheus.

Observability Improved the pg_replication default metric for Prometheus

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 68

Observability Used alertInstanceLabelFilter instead of alertName in the provided Grafana dashboard

Observability Enforce standard_conforming_strings in metric collection.

Change Set the default operand image to PostgreSQL 16.0.

Change Fencing now uses PostgreSQL's fast shutdown instead of smart shutdown to halt an instance.

Change Rename webhooks from kb.io to k8s.enterprisedb.io group.

Change Added the k8s.enterprisedb.io/instanceRole label and deprecated the existing role label.

Type Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 69

2.56 EDB Postgres for Kubernetes 1.18.6 release notes

Released: 27 Jul 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Enhancement Added a metric and status field to monitor node usage by an EDB Postgres for Kubernetes cluster.

Enhancement Added troubleshooting instructions relating to hugepages to the documentation.

Enhancement Extended the FAQs page in the documentation.

Enhancement Added a check at the start of the restore process to ensure it can proceed; give improved error diagnostics if it cannot.

Bug fix Ensured the logic of setting the recovery target matches that of Postgres.

Bug fix Prevented taking over service accounts not owned by the cluster by setting ownerMetadata only during service account
creation.

Bug fix Prevented a possible crash of the instance manager during the configuration reload.

Bug fix Prevented the LastFailedArchiveTime alert from triggering if a new backup has been successful after the failed ones.

Security fix Updated all project dependencies to the latest versions

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 70

2.57 EDB Postgres for Kubernetes 1.18.5 release notes

Released: 13 Jun 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.18.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 71

https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/

2.58 EDB Postgres for Kubernetes 1.18.4 release notes

Released: 27 Apr 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.18.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 72

https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/

2.59 EDB Postgres for Kubernetes 1.18.3 release notes

Released: 20 Mar 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.18.3. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 73

https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/

2.60 EDB Postgres for Kubernetes 1.18.2 release notes

Released: 14 Feb 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.18.2. See the community Release Notes.

Feature Support for Transparent Data Encryption (TDE) with EDB Postgtres Advanced Server 15. TDE encrypts, transparently to the user, any
user data stored in the database system.

Feature New external backup adaptor to provide a generic way to integrate EDB Postgres for Kubernetes in a third-party tool for backups. See
External Backup Adapter for more information.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 74

https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/
https://www.enterprisedb.com/docs/tde/latest

2.61 EDB Postgres for Kubernetes 1.18.1 release notes

Released: 21 Dec 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.18.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 75

https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/

2.62 EDB Postgres for Kubernetes 1.18.0 release notes

Released: 14 Nov 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.18. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 76

https://cloudnative-pg.io/documentation/1.18/release_notes/v1.18/

2.63 EDB Postgres for Kubernetes 1.17.5 release notes

Released: 20 Mar 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.17.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 77

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/

2.64 EDB Postgres for Kubernetes 1.17.4 release notes

Released: 14 Feb 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.17.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 78

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/

2.65 EDB Postgres for Kubernetes 1.17.3 release notes

Released: 21 Dec 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.17.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 79

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/

2.66 EDB Postgres for Kubernetes 1.17.2 release notes

Released: 14 Nov 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.17.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 80

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/

2.67 EDB Postgres for Kubernetes 1.17.1 release notes

Released: 07 Oct 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.17.1. See the community Release Notes.

Enhancement Introduces leaseDuration and renewDeadline parameters in the controller manager to enhance configuration of the leader
election in operator deployments.

Enhancement
Improves the mechanism that checks that the backup object store is empty before archiving a WAL file for the first time. A new file
called .check-empty-wal-archive is placed in the PGDATA immediately after the cluster is bootstrapped. It is removed after
the first WAL file is successfully archived.

Security
Explicitly sets permissions of the instance manager binary that is copied in the distroless/static:nonroot container image,
by using the nonroot:nonroot user.

Bug fix Drops any active connection on a standby after it is promoted to primary.

Bug fix Honors MAPPEDMETRIC and DURATION metric types conversion in the native Prometheus exporter.

Bug fix Ensures that timestamps that are specified with microsecond precision using the PostgreSQL format are correctly parsed.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 81

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.17/

2.68 EDB Postgres for Kubernetes 1.17.0 release notes

Released: 06 Sep 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.17. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 82

https://cloudnative-pg.io/documentation/1.17/release_notes/#v1.17

2.69 EDB Postgres for Kubernetes 1.16.5 release notes

Released: 21 Dec 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.16.5. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 83

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.16/

2.70 EDB Postgres for Kubernetes 1.16.4 release notes

Released: 14 Nov 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.16.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 84

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.16/

2.71 EDB Postgres for Kubernetes 1.16.3 release notes

Released: 07 Oct 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.16.3. See the community Release Notes.

Enhancement Introduces leaseDuration and renewDeadline parameters in the controller manager to enhance configuration of the leader
election in operator deployments.

Enhancement
Improves the mechanism that checks that the backup object store is empty before archiving a WAL file for the first time. A new file
called .check-empty-wal-archive is placed in the PGDATA immediately after the cluster is bootstrapped. It is removed after
the first WAL file is successfully archived.

Security
Explicitly sets permissions of the instance manager binary that is copied in the distroless/static:nonroot container image,
by using the nonroot:nonroot user.

Bug fix Drops any active connection on a standby after it is promoted to primary.

Bug fix Honors MAPPEDMETRIC and DURATION metric types conversion in the native Prometheus exporter.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 85

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.16/

2.72 EDB Postgres for Kubernetes 1.16.2 release notes

Released: 06 Sep 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.16.2. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 86

https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/

2.73 EDB Postgres for Kubernetes 1.16.1 release notes

Released: 12 Aug 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.16. See the community Release
Notes.

Important changes to our upgrade policy

We are adopting a new policy to support the last two minor versions of the product, in line with the CloudNativePG community.

As a result, we are introducing the following head versions in the new OLM channels in OpenShift to manage the update streams for EDB Postgres for
Kubernetes:

fast : the latest available patch release for the latest available minor release
stable-v1.16 : the latest available patch release of the 1.16 minor release
stable-v1.15 : the latest available patch release of the 1.15 minor release

Prior to this release, the only channel that we were supporting was the stable channel. This channel is now obsolete. However, for backward
compatibility it is currently set as an alias of the stable-v1.15 channel. It will be removed once version 1.15 reaches End of Life.

Important information about upgrading to a 1.16.x operator version on Openshift

We have made a change to the way conditions are represented in the status of the operator in version 1.16.0 and onward. This change could cause an
operator upgrade to hang on Openshift if one of the old conditions are set during the upgrade process because of the way the Operator Lifecycle Manager
checks new CRDs against existing CRs.

Prior to installing 1.16.x on Openshift, if you are upgrading from a 1.15.x (or earlier) version of the operator, we recommend uninstalling the existing
version of the operator, then deleting all of the old conditions out of the statuses of all existing EDB Postgres for Kubernetes clusters. This will have no
effect on the operability of your existing EDB Postgres for Kubernetes clusters.

To remove the existing conditions run:

ImportantImportant

The kubectl command must be version 1.24 or higher. If you get the output The request is invalid it means that the target cluster didn't
have any condition on it.

This command will remove all of the conditions from all of the EDB Postgres for Kubernetes clusters in your Openshift cluster. Once the command
completes, you can safely install version 1.16.x.

whilewhile IFS==' ' read NS CLUSTER;;
dodo
 kubectl -n ${NS} patch --type=='json' ${CLUSTER} --subresource==status -p=='[{"op": "remove", "path":
"/status/conditions"}]';;
donedone << <(<(kubectl get cluster -A --no-headers==true -o jsonpath='{range .items[*]}{.metadata.namespace}{"
cluster/"}{.metadata.name}{"\n"}{end}'))

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 87

https://cloudnative-pg.io/documentation/1.16/release_notes/v1.16/

If you have already tried to upgrade to 1.16.x from 1.15.x (or earlier) and the install of 1.16.x shows as "Pending" and the earlier version shows as "Cannot
update", uninstall both versions of the operator and run the command that removes the statuses.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 88

2.74 EDB Postgres for Kubernetes 1.16.0 release notes

Released: 07 Jul 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.16. See the community Release Notes.

Enhancement New “fast” channel available for OpenShift, providing update paths to the latest available patch release in the latest available minor
release of EDB Postgres for Kubernetes. See the following section for more information.

Enhancement New “stable-v1.16” channel available for OpenShift, providing update paths to the latest available patch release in the 1.16 release
branch of EDB Postgres for Kubernetes. See the following section for more information.

Important changes to our upgrade policy

We are adopting a new policy to support the last two minor versions of the product, in line with the CloudNativePG community.

As a result, we are introducing the following head versions in the new OLM channels in OpenShift to manage the update streams for EDB Postgres for
Kubernetes:

fast : the latest available patch release for the latest available minor release
stable-v1.16 : the latest available patch release of the 1.16 minor release
stable-v1.15 : the latest available patch release of the 1.15 minor release

Prior to this release, the only channel that we were supporting was the stable channel. This channel is now obsolete. However, for backward
compatibility it is currently set as an alias of the stable-v1.15 channel. It will be removed once version 1.15 reaches End of Life.

Important information about upgrading to a 1.16.x operator version on Openshift

We have made a change to the way conditions are represented in the status of the operator in version 1.16.0 and onward. This change could cause an
operator upgrade to hang on Openshift if one of the old conditions are set during the upgrade process because of the way the Operator Lifecycle Manager
checks new CRDs against existing CRs.

Prior to installing 1.16.x on Openshift, if you are upgrading from a 1.15.x (or earlier) version of the operator, we recommend uninstalling the existing
version of the operator, then deleting all of the old conditions out of the statuses of all existing EDB Postgres for Kubernetes clusters. This will have no
effect on the operability of your existing EDB Postgres for Kubernetes clusters.

To remove the existing conditions run:

ImportantImportant

The kubectl command must be version 1.24 or higher. If you get the output The request is invalid it means that the target cluster didn't
have any condition on it.

whilewhile IFS==' ' read NS CLUSTER;;
dodo
 kubectl -n ${NS} patch --type=='json' ${CLUSTER} --subresource==status -p=='[{"op": "remove", "path":
"/status/conditions"}]';;
donedone << <(<(kubectl get cluster -A --no-headers==true -o jsonpath='{range .items[*]}{.metadata.namespace}{"
cluster/"}{.metadata.name}{"\n"}{end}'))

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 89

https://cloudnative-pg.io/documentation/1.16/release_notes/#version-1160

This command will remove all of the conditions from all of the EDB Postgres for Kubernetes clusters in your Openshift cluster. Once the command
completes, you can safely install version 1.16.x.

If you have already tried to upgrade to 1.16.x from 1.15.x (or earlier) and the install of 1.16.x shows as "Pending" and the earlier version shows as "Cannot
update", uninstall both versions of the operator and run the command that removes the statuses.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 90

2.75 EDB Postgres for Kubernetes 1.15.5 release notes

Released: 07 Oct 2022

WarningWarning

Version 1.15 has reached End-of-Life (EOL). Version 1.15.5 is the last release for the 1.15 minor version.

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.15.5. See the community Release Notes.

Enhancement Introduces leaseDuration and renewDeadline parameters in the controller manager to enhance configuration of the leader
election in operator deployments.

Enhancement
Improves the mechanism that checks that the backup object store is empty before archiving a WAL file for the first time. A new file
called .check-empty-wal-archive is placed in the PGDATA immediately after the cluster is bootstrapped. It is removed after
the first WAL file is successfully archived.

Security
Explicitly sets permissions of the instance manager binary that is copied in the distroless/static:nonroot container image,
by using the nonroot:nonroot user.

Bug fix Makes the cluster's conditions compatible with metav1.Conditions struct.

Bug fix Drops any active connection on a standby after it is promoted to primary.

Bug fix Honors MAPPEDMETRIC and DURATION metric types conversion in the native Prometheus exporter.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 91

https://cloudnative-pg.io/documentation/1.17/release_notes/v1.15/

2.76 EDB Postgres for Kubernetes 1.15.4 release notes

Released: 06 Sep 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.15.4. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 92

https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15/

2.77 EDB Postgres for Kubernetes 1.15.3 release notes

Released: 12 Aug 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.15.3. See the community Release
Notes.

Important changes to our upgrade policy

We are adopting a new policy to support the last two minor versions of the product beginning with 1.16, in line with the CloudNativePG community.

As a result, we are introducing the following head versions in the new OLM channels in OpenShift to manage the update streams for EDB Postgres for
Kubernetes:

fast : the latest available patch release for the latest available minor release
stable-v1.16 : the latest available patch release of the 1.16 minor release
stable-v1.15 : the latest available patch release of the 1.15 minor release

Prior to the release of 1.16, the only channel that we were supporting was the stable channel. This channel is now obsolete. However, for backward
compatibility it is currently set as an alias of the stable-v1.15 channel and it will be removed once version 1.15 goes End of Life.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 93

https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15/

2.78 EDB Postgres for Kubernetes 1.15.2 release notes

Released: 07 Jul 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream
merge

Merged with community CloudNativePG 1.15.2. See the community Release Notes.

Enhancement
New “stable-v1.15” channel available for OpenShift, providing update paths to the latest available patch release in the 1.15 release
branch of EDB Postgres for Kubernetes. The “stable” channel is a synonym of “stable-v1.15”. See the following section for more
information.

Important changes to our upgrade policy

We are adopting a new policy to support the last two minor versions of the product beginning with 1.16, in line with the CloudNativePG community.

As a result, we are introducing the following head versions in the new OLM channels in OpenShift to manage the update streams for EDB Postgres for
Kubernetes:

fast : the latest available patch release for the latest available minor release
stable-v1.16 : the latest available patch release of the 1.16 minor release
stable-v1.15 : the latest available patch release of the 1.15 minor release

Prior to the release of 1.16, the only channel that we were supporting was the stable channel. This channel is now obsolete. However, for backward
compatibility it is currently set as an alias of the stable-v1.15 channel and it will be removed once version 1.15 goes End of Life.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 94

https://cloudnative-pg.io/documentation/1.15/release_notes/#version-1152

2.79 EDB Postgres for Kubernetes 1.15.1 release notes

Released: 27 May 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.15.1. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 95

https://cloudnative-pg.io/documentation/1.15/release_notes/#version-1151

2.80 EDB Postgres for Kubernetes 1.15.0 release notes

Released: 21 Apr 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Upstream merge Merged with community CloudNativePG 1.15.0. See the community Release
Notes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 96

https://cloudnative-pg.io/documentation/1.15/release_notes/v1.15/

2.81 EDB Postgres for Kubernetes 1.14.0 release notes

Released: 25 Mar 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Natively support Google Cloud Storage for backup and recovery, by taking advantage of the features introduced in Barman Cloud 2.19.

Feature Improved observability of backups through the introduction of the LastBackupSucceeded condition for the Cluster object.

Feature Support update of Hot Standby sensitive parameters: max_connections, max_prepared_transactions, max_locks_per_transaction,
max_wal_senders, max_worker_processes.

Feature Add the Online upgrade in progress phase in the Cluster object to show when an online upgrade of the operator is in progress.

Feature Ability to inherit an AWS IAM Role as an alternative way to provide credentials for the S3 object storage.

Feature Support for Opaque secrets for Pooler’s authQuerySecret and certificates.

Feature Updated default PostgreSQL version to 14.2.

Feature Add a new command to kubectl cnp plugin named maintenance to set maintenance window to cluster(s) in one or all namespaces
across the Kubernetes cluster.

Container
images

Latest PostgreSQL and EDB Postgres Advanced Server containers include Barman Cloud 2.19.

Security fix Stronger RBAC enforcement for namespaced operator installations with Operator Lifecycle Manager, including OpenShift. OpenShift
users are recommended to update to this version.

Bug fix Allow the instance manager to retry an interrupted pg_rewind by preserving a copy of the original pg_control file.

Bug fix Clean up stale PID files before running pg_rewind.

Bug fix Force sorting by key in primary_conninfo to avoid random restarts with PostgreSQL versions prior to 13.

Bug fix Preserve ServiceAccount changes (e.g., labels, annotations) upon reconciliation.

Bug fix Disable enforcement of the imagePullPolicy default value.

Bug fix Improve initDB validation for WAL segment size.

Bug fix Properly handle the targetLSN option when recovering a cluster with the LSN specified.

Bug fix Fix custom TLS certificates validation by allowing a certificates chain both in the server and CA certificates.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 97

2.82 EDB Postgres for Kubernetes 1.13.0 release notes

Released: 17 Feb 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Support for Snappy compression. Snappy is a fast compression option for backups that increase the speed of uploads to the object store
using a lower compression ratio.

Feature Support for tagging files uploaded to the Barman object store. This feature requires Barman 2.18 in the operand image. of backups after
Cluster deletion.

Feature Extension of the status of a Cluster with status.conditions. The condition ContinuousArchiving indicates that the Cluster has started to
archive WAL files.

Feature Improve the status command of the cnp plugin for kubectl with additional information: add a Cluster Summary section showing the status
of the Cluster and a Certificates Status section including the status of the certificates used in the Cluster along with the time left to expire.

Feature Support the new barman-cloud-check-wal-archive command to detect a non-empty backup destination when creating a new cluster.

Feature Add support for using a Secret to add default monitoring queries through MONITORING_QUERIES_SECRET configuration variable.

Feature Allow the user to restrict container’s permissions using AppArmor (on Kubernetes clusters deployed with AppArmor support).

Feature Add Windows platform support to cnp plugin for kubectl, now the plugin is available on Windows x86 and ARM.

Feature Drop support for Kubernetes 1.18 and deprecated API versions

Container
images

PostgreSQL containers include Barman 2.18.

Security
fix

Add coherence check of username field inside owner and superuser secrets; previously, a malicious user could have used the secrets to
change the password of any PostgreSQL user.

Bug fix Fix a memory leak in code fetching status from Postgres pods.

Bug fix Disable PostgreSQL self-restart after a crash. The instance controller handles the lifecycle of the PostgreSQL instance.

Bug fix Prevent modification of spec.postgresUID and spec.postgresGID fields in validation webhook. Changing these fields after Cluster creation
makes PostgreSQL unable to start.

Bug fix Reduce the log verbosity from the backup and WAL archiving handling code.

Bug fix Correct a bug resulting in a Cluster being marked as Healthy when not initialized yet.

Bug fix Allows standby servers in clusters with a very high WAL production rate to switch to streaming once they are aligned.

Bug fix Fix a race condition during the startup of a PostgreSQL pod that could seldom lead to a crash.

Bug fix Fix a race condition that could lead to a failure initializing the first PVC in a Cluster.

Bug fix Remove an extra restart of a just demoted primary Pod before joining the Cluster as a replica.

Bug fix Correctly handle replication-sensitive PostgreSQL configuration parameters when recovering from a backup.

Bug fix Fix missing validation of PostgreSQL configurations during Cluster creation.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 98

2.83 EDB Postgres for Kubernetes 1.12.0 release notes

Released: 11 Jan 2022

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Add Kubernetes 1.23 to the list of supported Kubernetes distributions and remove end-to-end tests for 1.17, which ended support by the
Kubernetes project in Dec 2020.

Feature
Improve the responsiveness of pod status checks in case of network issues by adding a connection timeout of 2 seconds and a
communication timeout of 30 seconds. This change sets a limit on the time the operator waits for a pod to report its status before declaring it
as failed, enhancing the robustness and predictability of a failover operation.

Feature Introduce the .spec.inheritedMetadata field to the Cluster allowing the user to specify labels and annotations that will apply to all objects
generated by the Cluster.

Feature Reduce the number of queries executed when calculating the status of an instance.

Feature Add a readiness probe for PgBouncer.

Feature Add support for custom Certification Authority of the endpoint of Barman’s backup object store when using Azure protocol.

Bug fix
During a failover, wait to select a new primary until all the WAL streaming connections are closed. The operator now sets by default
wal_sender_timeout and wal_receiver_timeout to 5 seconds to make sure standby nodes will quickly notice if the primary has network
issues.

Bug fix
Change WAL archiving strategy in replica clusters to fix rolling updates by setting "archive_mode" to "always" for any PostgreSQL instance
in a replica cluster. We then restrict the upload of the WAL only from the current and target designated primary. A WAL may be uploaded
twice during switchovers, which is not an issue.

Bug fix Fix support for custom Certification Authority of the endpoint of Barman’s backup object store in replica clusters source.

Bug fix Use a fixed name for default monitoring config map in the cluster namespace.

Bug fix If the defaulting webhook is not working for any reason, the operator now updates the Cluster with the defaults also during the
reconciliation cycle.

Bug fix Fix the comparison of resource requests and limits to fix a rare issue leading to an update of all the pods on every reconciliation cycle.

Bug fix Improve log messages from webhooks to also include the object namespace.

Bug fix Stop logging a “default” message at the start of every reconciliation loop.

Bug fix Stop logging a PodMonitor deletion on every reconciliation cycle if enablePodMonitor is false.

Bug fix Do not complain about possible architecture mismatch if a pod is not reachable.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 99

2.84 EDB Postgres for Kubernetes 1.11.0 release notes

Released: 15 Dec 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature

Parallel WAL archiving and restore: allow the database to keep up with WAL generation on high write systems by introducing the
backupObjectStore.maxParallel option to set the maximum number of parallel jobs to be executed during both WAL archiving (by
PostgreSQL’s archive_command) and WAL restore (by restore_command). Using parallel restore option can allow newly promoted Standbys
to get to a ready state faster by fetching needed WAL files to replay in parallel rather than sequentially.

Feature
Default set of metrics for monitoring: a new ConfigMap called default-monitoring is automatically deployed in the same namespace of the
operator and, by default, added to any existing Postgres cluster. Such behavior can be changed globally by setting the
MONITORING_QUERIES_CONFIGMAP parameter in the operator’s configuration, or at cluster level through the .spec.monitoring.

Feature disableDefaultQueries option (by default set to false).

Feature Introduce the enablePodMonitor option in the monitoring section of a cluster to automatically manage a PodMonitor resource and
seamlessly integrate with Prometheus.

Feature Improve the PostgreSQL shutdown procedure by trying to execute a smart shutdown for the first half of the desired stopDelay time, and a
fast shutdown for the remaining half, before the pod is killed by Kubernetes.

Feature Add the switchoverDelay option to control the time given to the former primary to shut down gracefully and archive all the WAL files before
promoting the new primary (by default, Cloud Native PostgreSQL waits indefinitely to privilege data durability).

Feature Handle changes to resource requests and limits for a PostgreSQL Cluster by issuing a rolling update.

Feature Improve the status command of the cnp plugin for kubectl with additional information: streaming replication status, total size of the
database, role of an instance in the cluster.

Feature Enhance support of workloads with many parallel workers by enabling configuration of the dynamic_shared_memory_type and
shared_memory_type parameters for PostgreSQL’s management of shared memory.

Feature Propagate labels and annotations defined at cluster level to the associated resources, including pods (deletions are not supported).

Feature Automatically remove pods that have been evicted by the Kubelet.

Feature Manage automated resizing of persistent volumes in Azure through the ENABLE_AZURE_PVC_UPDATES operator configuration option, by
issuing a rolling update of the cluster if needed (disabled by default).

Feature Introduce thek8s.enterprisedb.io/reconciliationLoop annotation that, when set to disabled on a given Postgres cluster, prevents the
reconciliation loop from running.

Feature Introduce the postInitApplicationSQL option as part of the initdb bootstrap method to specify a list of SQL queries to be executed on the
main application database as a superuser immediately after the cluster has been created.

Feature Support for EDB Postgres Advanced 14.2.

Bug fix
Liveness probe now correctly handles the startup process of a PostgreSQL server. This fixes an issue reported by a few customers and affects
a restarted standby server that needs to recover WAL files to reach a consistent state, but it was not able to do it before the timeout of
liveness probe would kick in, leaving the pods in CrashLoopBackOff status.

Bug fix Liveness probe now correctly handles the case of a former primary that needs to use pg_rewind to re-align with the current primary after a
timeline diversion. This fixes the pod of the new standby from repeatedly being killed by Kubernetes.

Bug fix Reduce client-side throttling from Postgres pods (e.g. Waited for 1.182388649s due to client-side throttling, not priority and fairness,
request: GET).

Bug fix Disable Public Key Infrastructure (PKI) initialization on OpenShift and OLM installations, by using the provided one.

Bug fix When changing configuration parameters that require a restart, always leave the primary as last.

Bug fix Mark a PVC to be ready only after a job has been completed successfully, preventing a race condition in PVC initialization.

Bug fix Use the correct public key when renewing the expired webhook TLS secret.

Bug fix Fix an overflow when parsing an LSN.

Bug fix Remove stale PID files at startup.

Bug fix Let the Pooler resource inherit the imagePullSecret defined in the operator, if exists.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 100

2.85 EDB Postgres for Kubernetes 1.10.0 release notes

Released: 11 Nov 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature

Connection Pooling with PgBouncer: introduce the Pooler resource and controller to automatically manage a PgBouncer deployment to be
used as a connection pooler for a local PostgreSQL Cluster. The feature includes TLS client/server connections, password authentication,
High Availability, pod templates support, configuration of key PgBouncer parameters, PAUSE/RESUME, logging in JSON format,
Prometheus exporter for stats, pools, and lists.

Feature Backup Retention Policies: support definition of recovery window retention policies for backups (e.g. ‘30d’ to ensure a recovery window of
30 days).

Feature
In-Place updates of the operator: introduce an in-place online update of the instance manager, which removes the need to perform a rolling
update of the entire cluster following an update of the operator. By default this option is disabled (please refer to the documentation for
more detailed information).

Feature Limit the list of options that can be customized in the initdb bootstrap method to dataChecksums, encoding, localeCollate, localeCType,
walSegmentSize. This makes the options array obsolete and planned to be removed in the v2 API.

Feature
Introduce the postInitTemplateSQL option as part of the initdb bootstrap method to specify a list of SQL queries to be executed on the
template1 database as a superuser immediately after the cluster has been created. This feature allows you to include default objects in all
application databases created in the cluster.

Feature New default metrics added to the instance Prometheus exporter: Postgres version, cluster name, and first point of recoverability according
to the backup catalog.

Feature Retry taking a backup after a failure.

Feature Build awareness about Barman Cloud capabilities in order to prevent the operator from invoking recently introduced features (such as
retention policies, or Azure Blob Container storage) that are not present in operand images that are not frequently updated.

Feature Integrate the output of the status command of the cnp plugin with information about the backup.

Feature Introduce a new annotation that reports the status of a PVC (being initialized or ready).

Feature Set the cluster name in the k8s.enterprisedb.io/cluster label for every object generated in a Cluster, including Backup objects.

Feature Drop support for deprecated API version postgresql.k8s.enterprisedb.io/v1alpha1 on the Cluster, Backup, and ScheduledBackup kinds.

Feature Set default operand image to PostgreSQL 14.2.

Security
fix

Set allowPrivilegeEscalation to false for the operator containers securityContext.

Bug fix Disable primary PodDisruptionBudget during maintenance in single-instance clusters.

Bug fix Use the correct certificate certification authority (CA) during recovery operations.

Bug fix Prevent Postgres connection leaking when checking WAL archiving status before taking a backup.

Bug fix Let WAL archive/restore sleep for 100ms following transient errors that would flood logs otherwise.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 101

2.86 EDB Postgres for Kubernetes 1.9.2 release notes

Released: 15 Oct 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Enhance JSON log with two new loggers: wal-archive for PostgreSQL's archive_command, and wal-restore for restore_command in a
standby.

Bug fix Enable WAL archiving during the standby promotion (prevented .history files from being archived).

Bug fix Pass the --cloud-provider option to Barman Cloud tools only when using Barman 2.13 or higher to avoid errors with older operands.

Bug fix Wait for the pod of the primary to be ready before triggering a backup.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 102

2.87 EDB Postgres for Kubernetes 1.9.1 release notes

Released: 30 Sep 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature This release is to celebrate the launch of PostgreSQL 14 by making it the default major version when a new Cluster is created without
defining a specific image name.

Bug fix Fix issue causing Error while getting barman endpoint CA secret message to appear in the logs of the primary pod, which prevented the
backup to work correctly.

Bug fix Properly retry requesting a new backup in case of temporary communication issues with the instance manager.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 103

2.88 EDB Postgres for Kubernetes 1.9.0 release notes

Released: 28 Sep 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Add Kubernetes 1.22 to the list of supported Kubernetes distributions, and remove 1.16.

Feature Introduce support for the --restore-target-wal option in pg_rewind, in order to fetch WAL files from the backup archive, if necessary
(available only with PostgreSQL/EPAS 13+).

Feature Version 1.9.0 is not available on OpenShift due to delays with the release process and the subsequent release of version 1.9.1.

Feature Expose a default metric for the Prometheus exporter that estimates the number of pages in the pg_catalog.pg_largeobject table in each
database.

Feature Enhance the performance of WAL archiving and fetching, through local in-memory cache.

Bug fix Explicitly set the postgres user when invoking pg_isready - required by restricted SCC in OpenShift.

Bug fix Properly update the FirstRecoverabilityPoint in the status.

Bug fix Set archive_mode = always on the designated primary if backup is requested.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 104

2.89 EDB Postgres for Kubernetes 1.8.0 release notes

Released: 13 Sep 2023

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Bootstrap a new cluster via full or Point-In-Time Recovery directly from an object store defined in the external cluster section, eliminating
the previous requirement to have a Backup CR defined.

Feature Introduce the immediate option in scheduled backups to request a backup immediately after the first Postgres instance running, adding the
capability to rewind to the very beginning of a cluster when Point-In-Time Recovery is configured.

Feature Add the firstRecoverabilityPoint in the cluster status to report the oldest consistent point in time to request a recovery based on the backup
object store’s content.

Feature

Enhance the default Prometheus exporter for a PostgreSQL instance by exposing the following new metrics: number of WAL files and
computed total size on disk, number of WAL files and computed total size on disk, number of .ready and .done files in the archive status
folder, flag for replica mode, number of requested minimum/maximum synchronous replicas, as well as the expected and actually observed
ones.

Feature Add support for the runonserver option when defining custom metrics in the Prometheus exporter to limit the collection of a metric to a
range of PostgreSQL versions.

Feature Natively support Azure Blob Storage for backup and recovery, by taking advantage of the feature introduced in Barman 2.13 for Barman
Cloud.

Feature Rely on pg_isready for the liveness probe.

Feature Support RFC3339 format for timestamp specification in recovery target times.

Feature Introduce .spec.imagePullPolicy to control the pull policy of image containers for all pods and jobs created for a cluster.

Feature Add support for OpenShift 4.8, which replaces OpenShift 4.5.

Feature Support PostgreSQL 14 (beta).

Feature Enhance the replica cluster feature with cross-cluster replication from an object store defined in an external cluster section, without
requiring a streaming connection (experimental).

Feature Introduce logLevel option to the cluster's spec to specify one of the following levels: error, info, debug or trace.

Security
fix

Introduce .spec.enableSuperuserAccess to enable/disable network access with the postgres user through password authentication.

Security
fix

Enable specification of a license key in a secret with spec.licenseKeySecret.

Bug fix Properly inform users when a cluster enters an unrecoverable state and requires human intervention.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 105

2.90 EDB Postgres for Kubernetes 1.7.1 release notes

Released: 11 Aug 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Prefer self-healing over configuration with regards to synchronous replication, empowering the operator to temporarily override
minSyncReplicas and maxSyncReplicas settings in case the cluster is not able to meet the requirements during self-healing operations.

Feature Introduce the postInitSQL option as part of the initdb bootstrap method to specify a list of SQL queries to be executed as a superuser
immediately after the cluster has been created.

Bug fix Allow the operator to failover when the primary is not ready (bug introduced in 1.7.0).

Bug fix Execute administrative queries using the LOCAL synchronous commit level.

Bug fix Correctly parse multi-line log entries in PGAudit.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 106

2.91 EDB Postgres for Kubernetes 1.7.0 release notes

Released: 28 Jul 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Add native support to PGAudit with a new type of logger called pgaudit directly available in the JSON output.

Feature Native support for the pg_stat_statements and auto_explain extensions.

Feature The target_databases option in the Prometheus exporter to run a user-defined metric query on one or more databases (including auto-
discovery of databases through shell-like pattern matching).

Feature Exposure of the manual_switchover_required metric to promptly report whether a cluster with primaryUpdateStrategy set to supervised
requires a manual switchover.

Feature Transparently handle shared_preload_libraries for pg_audit, auto_explain and pg_stat_statements.

Feature Automatic configuration of shared_preload_libraries for PostgreSQL when pg_stat_statements, pgaudit or auto_explain options are added
to the postgresql parameters section.

Feature Support the k8s.enterprisedb.io/reload label to finely control the automated reload of config maps and secrets, including those used for
custom monitoring/alerting metrics in the Prometheus exporter or to store certificates.

Feature Add the reload command to the cnp plugin for kubectl to trigger a reconciliation loop on the instances.

Feature Improve control of pod affinity and anti-affinity configurations through additionalPodAffinity and additionalPodAntiAffinity.

Feature Introduce a separate PodDisruptionBudget for primary instances, by requiring at least a primary instance to run at any time.

Security
fix

Add the .spec.certificates.clientCASecret and spec.certificates.replicationTLSSecret options to define custom client Certification.

Security
fix

Authority and certificate for the PostgreSQL server, to be used to authenticate client certificates and secure communication between
PostgreSQL nodes.

Security
fix

Add the .spec.backup.barmanObjectStore.endpointCA option to define the custom Certification Authority bundle of the endpoint of
Barman’s backup object store.

Bug fix Correctly parse histograms in the Prometheus exporter.

Bug fix Reconcile services created by the operator for a cluster.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 107

2.92 EDB Postgres for Kubernetes 1.6.0 release notes

Released: 12 Jul 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Replica mode (EXPERIMENTAL): allow a cluster to be created as a replica of a source cluster. A replica cluster has a designated primary and
any number of standbys.

Feature EDB Audit support on EDB Postgres Advanced Server images.

Feature Add the .spec.postgresql.promotionTimeout parameter to specify the maximum amount of seconds to wait when promoting an instance to
primary, defaulting to 40000000 seconds.

Feature
Add the .spec.affinity.podAntiAffinityType parameter. It can be set to preferred (default), resulting in
preferredDuringSchedulingIgnoredDuringExecution being used, or to required, resulting in
requiredDuringSchedulingIgnoredDuringExecution.

Security
fix

Prevent license keys from appearing in the logs.

Change Fixed a race condition when deleting a PVC and a pod which prevented the operator from creating a new pod.

Change Fixed a race condition preventing the manager from detecting the need for a PostgreSQL restart on a configuration change.

Change Fixed a panic in kubectl-cnp on clusters without annotations.

Change Lowered the level of some log messages to debug.

Change E2E tests for server CA and TLS injection.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 108

2.93 EDB Postgres for Kubernetes 1.5.1 release notes

Released: 11 Jun 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Change Fix a bug with CRD validation preventing auto-update with Operator Deployments on Red Hat OpenShift.

Change Allow passing operator's configuration using a Secret.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 109

2.94 EDB Postgres for Kubernetes 1.5.0 release notes

Released: 17 Jun 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Introduce the pg_basebackup bootstrap method to create a new PostgreSQL cluster as a copy of an existing PostgreSQL instance of
the same major version, even outside Kubernetes.

Feature Add support for Kubernetes’ tolerations in the Affinity section of the Cluster resource, allowing users to distribute PostgreSQL
instances on Kubernetes nodes with the required taint.

Feature Enable specification of a digest to an image name, through the <image>:<tag>@sha256:<digestValue> format, for more
deterministic and repeatable deployments.

Security fix Customize TLS certificates to authenticate the PostgreSQL server by defining secrets for the server certificate and the related
Certification Authority that signed it.

Security fix Raise the sslmode for the WAL receiver process of internal and automatically managed streaming replicas from require to verify-ca.

Change Enhance the promote subcommand of the cnp plugin for kubectl to accept just the node number rather than the whole name of the
pod.

Change Adopt DNS-1035 validation scheme for cluster names (from which service names are inherited).

Change Enforce streaming replication connection when cloning a standby instance or when bootstrapping using the pg_basebackup
method.

Change Integrate the Backup resource with beginWal, endWal, beginLSN, endLSN, startedAt and stoppedAt regarding the physical base
backup.

Documentation
fix

Provide a list of ports exposed by the operator and the operand container.

Documentation
fix

Introduce the cnp-bench helm charts and guidelines for benchmarking the storage and PostgreSQL for database workloads.

E2E test fix Test Kubernetes 1.21.

E2E test fix Add test for High Availability of the operator.

E2E test fix Add test for node draining.

Bug fix Timeout to pg_ctl start during recovery operations too short.

Bug fix Operator not watching over direct events on PVCs.

Bug fix Fix handling of immediateCheckpoint and jobs parameter in barmanObjectStore backups.

Bug fix Empty logs when recovering from a backup.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 110

2.95 EDB Postgres for Kubernetes 1.4.0 release notes

Released: 18 May 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Standard output logging of PostgreSQL error messages in JSON format.

Feature Provide a basic set of PostgreSQL metrics for the Prometheus exporter.

Feature Add the restart command to the cnp plugin for kubectl to restart the pods of a given PostgreSQL cluster in a rollout fashion.

Security fix Set readOnlyRootFilesystem security context for pods.

Change

IMPORTANT: If you have previously deployed the Cloud Native PostgreSQL operator using the YAML manifest, you must delete the
existing operator deployment before installing the new version. This is required to avoid conflicts with other Kubernetes API's due to
a change in labels and label selectors being directly managed by the operator. Please refer to the Cloud Native PostgreSQL
documentation for additional detail on upgrading to 1.4.0.

Change Fix the labels that are automatically defined by the operator, renaming them from control-plane: controller-manager to
app.kubernetes.io/name: cloud-native-postgresql.

Change Assign the metrics name to the TCP port for the Prometheus exporter.

Change Set cnp_metrics_exporter as the application_name to the metrics exporter connection in PostgreSQL.

Change When available, use the application database for monitoring queries of the Prometheus exporter instead of the postgres database.

Documentation
fixes

Customization of monitoring queries.

Documentation
fixes

Operator upgrade instructions.

Bug fix Avoid using -R when calling pg_basebackup.

Bug fix Remove stack trace from error log when getting the status.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 111

2.96 EDB Postgres for Kubernetes 1.3.0 release notes

Released: 23 Apr 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Inheritance of labels and annotations.

Feature Set resource limits for every container.

Security
fix

Support for restricted security context constraint on Red Hat OpenShift to limit pod execution to a namespace allocated UID and SELinux
context.

Security
fix

Pod security contexts explicitly defined by the operator to run as non-root, non-privileged and without privilege escalation.

Change Prometheus exporter endpoint listening on port 9187 (port 8000 is now reserved to instance coordination with API server).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 112

2.97 EDB Postgres for Kubernetes 1.2.1 release notes

Released: 06 Apr 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature ScheduledBackup are no longer owners of the Backups, meaning that backups are not removed when ScheduledBackup objects are
deleted.

Security
fix

Update on ubi8-minimal image to solve RHSA-2021:1024 (Security Advisory: Important).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 113

2.98 EDB Postgres for Kubernetes 1.2.0 release notes

Released: 31 Mar 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Introduce experimental support for custom monitoring queries as ConfigMap and Secret objects using a compatible syntax with
postgres_exporter for Prometheus.

Feature Support Operator Lifecycle Manager (OLM) deployments, with the subsequent presence on OperatorHub.io.

Feature Expand license key support for company-wide usage (previous restrictions limited only to a single cluster namespace).

Feature Enhance container security by applying guidelines from the US Department of Defense (DoD)'s Defense Information Systems Agency (DISA)
and the Center for Internet Security (CIS) and verifying them directly in the pipeline with Dockle.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 114

2.99 EDB Postgres for Kubernetes 1.1 release notes

Released: 03 Mar 2021

This release of EDB Postgres for Kubernetes includes the following:

Type Description

Feature Add kubectl cnp status to pretty-print the status of a cluster, including JSON and YAML output.

Feature Add kubectl cnp certificate to enable TLS authentication for client applications.

Feature Add the -ro service to route connections to the available hot standby replicas only, enabling offload of read-only queries from the cluster's
primary instance.

Feature Rollback scaling down a cluster to a value lower than maxSyncReplicas.

Feature Request a checkpoint before demoting a former primary.

Feature Send SIGINT signal (fast shutdown) to PostgreSQL process on SIGTERM.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 115

2.100 EDB Postgres for Kubernetes 1.0 release notes

Released: 04 Feb 2021

The first major release implements Cluster, Backup and ScheduledBackup in the API group postgresql.k8s.enterprisedb.io/v1. It uses these resources to
create and manage PostgreSQL clusters inside Kubernetes with the following main capabilities:

Type Description

Feature Direct integration with Kubernetes API server for High Availability, without requiring an external tool.

Feature Failover of the primary instance by promoting the most aligned replica.

Feature Automated recreation of a replica.

Feature Planned switchover of the primary instance by promoting a selected replica.

Feature Scale up/down capabilities.

Feature Definition of an arbitrary number of instances (minimum 1 - one primary server).

Feature Definition of the read-write service to connect your applications to the only primary server of the cluster.

Feature Definition of the read service to connect your applications to any of the instances for reading workloads.

Feature Support for Local Persistent Volumes with PVC templates.

Feature Reuse of Persistent Volumes storage in Pods.

Feature Rolling updates for PostgreSQL minor versions and operator upgrades.

Feature TLS connections and client certificate authentication.

Feature Continuous backup to an S3 compatible object store.

Feature Full recovery and point-in-time recovery from an S3 compatible object store backup.

Feature Support for synchronous replicas.

Feature Support for node affinity via nodeSelector property.

Feature Standard output logging of PostgreSQL error messages.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 116

2.101 EDB Postgres for Kubernetes 0.8 release notes

Released: 29 Jan 2021

Type Description

Feature Upgraded API version to v1.

Feature Implement node affinity via nodeSelector .

Feature Activate AntiAffinity by default.

Feature Remove completed Jobs from the cluster.

Feature Upgrade controller-runtime to v0.8.1.

Change Build container images using schema version 2.

Change Enhance E2E tests by covering more cases, robustness, and reliability improvements.

Fix Bug fixes and code improvements.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 117

2.102 EDB Postgres for Kubernetes 0.7 release notes

Released: 31 Dec 2020

Type Description

Feature Support pg_rewind if needed following a failover or switchover to let the former primary act as a
standby.

Feature Add persistent volume expansion support, if permitted by the storage class.

Enhancement Enhance metrics exporter for PostgreSQL.

Feature Add support for Kubernetes version 1.20.

Feature Drop support for Kubernetes version 1.15.

Feature Refactor E2E tests, including conversion to Github actions.

Fix Bug fixes and code improvements.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 118

2.103 EDB Postgres for Kubernetes 0.6 release notes

Released: 4 Dec 2020

Type Description

Feature
Add Point-In-Time Recovery based on timestamp, target name, or transaction Id, as well as the specification of the timeline, through a new
bootstrap method option called recoveryTarget .

Feature Add Synchronous Streaming Replication support through the minSyncReplicas and maxSyncReplicas cluster options, defining
respectively the expected minimum and maximum number of synchronous standby servers at any time (disabled by default)

Feature Support EDB Postgres Advanced Server (EPAS).

Feature Configure initdb options for the bootstrap of an empty cluster (initDb).

Feature Enable/Disable Redwood compatibility level with EPAS.

Feature Extend the instance manager with a new framework for the export of metrics for Prometheus - currently supporting pg_stat_archiver only.

Feature Use Kubernetes jobs instead of init containers to perform cluster initialization procedures (including standby creation and recovery) and
improve their observability.

Feature Record Kubernetes events to be used by kubectl describe and kubectl get events .

Feature Introduce Kubernetes expectations for Pods, PVCs, and Jobs to prevent race conditions.

Feature Set application_name in PostgreSQL to the name of the Pod/instance.

Feature The fullRecovery bootstrap mode has been renamed to recovery to address also Point-In-Time Recovery

Fix Bug fixes and code improvements.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 119

2.104 EDB Postgres for Kubernetes 0.5 release notes

Released: 20 Nov 2020

Type Description

Feature Automated provisioning of an independent Certification Authority (CA) for each PostgreSQL cluster.

Feature Transparent and native support for TLS/SSL connections to encrypt client/server communications.

Enhancement
Improve the security of the standby streaming replication channel through a dedicated and fixed database user called
streaming_replica with sole REPLICATION privileges and II. an automatically managed X.509 TLS certificate signed by the

cluster Certification Authority to authenticate the streaming_replica user.

Enhancement
Improve the security of the standby streaming replication channel through an automatically managed X.509 TLS certificate signed by
the cluster Certification Authority to authenticate the streaming_replica user.

Enhancement Improve PostgreSQL configuration capability through a mutating webhook that prevents users from changing those parameters that
are directly managed by the operator.

Enhancement Improve PostgreSQL configuration capability through a defaulting webhook that integrates the users' supplied configuration options
with default values in the cluster state.

Enhancement Improve PostgreSQL configuration capability through automated management of the PostgreSQL instances reload and restart.

Feature Enable custom and independent configuration of a PostgreSQL cluster following a recovery from a backup.

Feature Convey the current status of the cluster (i.e. healthy, failover in progress, switchover in progress).

Feature API change from k8s.2ndq.io to k8s.enterprisedb.io.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 120

2.105 EDB Postgres for Kubernetes 0.4 release notes

Released: 5 Nov 2020

Type Description

Feature Support for full recovery from a backup.

Feature
Add bootstrap section to configure how to initiate a cluster: initDB or
fullRecovery .

Feature Introduce defaulting and validating webhooks.

Feature Simplify configuration (convention over configuration).

Feature Constrain rolling upgrades to the same PostgreSQL major version.

Feature End-to-end tests run on GKE, AKS and GKS.

Enhancement Documentation improvements.

Enhancement Bug fixes and minor improvements.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 121

2.106 EDB Postgres for Kubernetes 0.3 release notes

Released: 25 Sep 2020

Type Description

Feature Support for PostgreSQL 13.

Feature Remove emptyDir volume storage support.

Feature Node maintenance support for PostgreSQL clusters with local storage through the nodeMaintenanceWindow parameter.

Enhancement Improve PostgreSQL configuration management through the usage of a dictionary supporting default, required and fixed values.

Feature Use MD5 as authentication method for inter-cluster communication, with automated password creation in a secret.

Feature Remove need for "trust" authentication method.

Feature
spec.postgresql.pg_hba is now optional, defaulting to MD5 authentication required for communication between Pods and
peer for in-Pod communication.

Feature Remove "unusable" annotation support, now PVC can just be removed followed by a deletion of the corresponding Pod.

Feature Support for license keys, including implicit 30 day trial version.

Fix Bug fixes and minor improvements.

Feature Update from an earlier version not supported.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 122

2.107 EDB Postgres for Kubernetes 0.2 release notes

Released: 11 Aug 2020

Type Description

Feature PostgreSQL 10 and 11 are now supported, in addition to PostgreSQL 12.

Feature Usage of UBI as base image of the operator (OpenShift support).

Feature New Backup and ScheduledBackup CRD, allowing users to take a physical backup of the cluster in an object store that complies with
the S3 protocol (such as AWS S3, MinIO, MinIO Gateway).

Feature Support for WAL archiving to an object store that complies with the S3 protocol.

Enhancement Improvements in the E2e tests infrastructure.

Fix Bug fixes and minor improvements.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 123

2.108 EDB Postgres for Kubernetes 0.1 release notes

Released: 3 Apr 2020

Type Description

Feature Reuse of existing persistent storage with Pods (required for rolling updates).

Feature Independence between operator container image and PostgreSQL container image (required by rolling updates) - this enables usage
of Community PostgreSQL images.

Feature
Rolling updates for the update of the operator and the entire cluster to a new version of PostgreSQL, by updating all the replicas first;
switchover can be entirely managed by Kubernetes once replicas have been updated (unsupervised option), or manually
triggered by the user (supervised option).

Feature Check framework for update-in-progress of a Pod.

Enhancement Improvements in cluster status information.

Enhancement E2E tests for Kubernetes 1.18.

Enhancement E2E performance tests for failover (< 5 seconds).

Enhancement Improvements in E2E tests for switchover.

Feature Support for PostgreSQL's cluster_name GUC.

Feature New documentation section Exposing Postgres services .

Feature New documentation section Security .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 124

2.109 EDB Postgres for Kubernetes 0.0.1 release notes

Released: 5 Mar 2020

Type Description

Feature PostgreSQL 12.2 container image.

Feature Self-Healing capability, through failover of the primary instance, by promoting the most aligned replica.

Feature Self-Healing capability, through automated recreation of a replica.

Feature Planned switchover of the primary instance, by promoting a selected replica.

Feature Scale up/down capabilities.

Feature Definition of an arbitrary number of instances (minimum 1 - one primary server).

Feature Definition of the read-write service, to connect your applications to the only primary server of the cluster.

Feature Definition of the read-only service, to connect your applications to any of the instances for read workloads.

Feature Support for Local Persistent Volumes with PVC templates.

Feature Standard output logging of PostgreSQL error messages.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 125

3 Before You Start

Before we get started, it is essential to go over some terminology that is specific to Kubernetes and PostgreSQL.

Kubernetes terminology

Node : A node is a worker machine in Kubernetes, either virtual or physical, where all services necessary to run pods are managed by the control plane
node(s).

Postgres Node : A Postgres node is a Kubernetes worker node dedicated to running PostgreSQL workloads. This is achieved by applying the node-
role.kubernetes.io label and taint, as proposed by EDB Postgres for Kubernetes. It is also referred to as a postgres node.

Pod : A pod is the smallest computing unit that can be deployed in a Kubernetes cluster and is composed of one or more containers that share network and
storage.

Service : A service is an abstraction that exposes as a network service an application that runs on a group of pods and standardizes important features such
as service discovery across applications, load balancing, failover, and so on.

Secret : A secret is an object that is designed to store small amounts of sensitive data such as passwords, access keys, or tokens, and use them in pods.

Storage Class : A storage class allows an administrator to define the classes of storage in a cluster, including provisioner (such as AWS EBS), reclaim
policies, mount options, volume expansion, and so on.

Persistent Volume : A persistent volume (PV) is a resource in a Kubernetes cluster that represents storage that has been either manually provisioned by an
administrator or dynamically provisioned by a storage class controller. A PV is associated with a pod using a persistent volume claim and its lifecycle is
independent of any pod that uses it. Normally, a PV is a network volume, especially in the public cloud. A local persistent volume (LPV) is a persistent
volume that exists only on the particular node where the pod that uses it is running.

Persistent Volume Claim : A persistent volume claim (PVC) represents a request for storage, which might include size, access mode, or a particular storage
class. Similar to how a pod consumes node resources, a PVC consumes the resources of a PV.

Namespace : A namespace is a logical and isolated subset of a Kubernetes cluster and can be seen as a virtual cluster within the wider physical cluster.
Namespaces allow administrators to create separated environments based on projects, departments, teams, and so on.

RBAC : Role Based Access Control (RBAC), also known as role-based security, is a method used in computer systems security to restrict access to the
network and resources of a system to authorized users only. Kubernetes has a native API to control roles at the namespace and cluster level and associate
them with specific resources and individuals.

CRD : A custom resource definition (CRD) is an extension of the Kubernetes API and allows developers to create new data types and objects, called custom
resources.

Operator : An operator is a custom resource that automates those steps that are normally performed by a human operator when managing one or more
applications or given services. An operator assists Kubernetes in making sure that the resource's defined state always matches the observed one.

kubectl : kubectl is the command-line tool used to manage a Kubernetes cluster.

EDB Postgres for Kubernetes requires a Kubernetes version supported by the community. Please refer to the "Supported releases" page for details.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 126

https://kubernetes.io/docs/concepts/architecture/nodes/
https://kubernetes.io/docs/concepts/workloads/pods/pod/
https://kubernetes.io/docs/concepts/services-networking/service/
https://kubernetes.io/docs/concepts/configuration/secret/
https://kubernetes.io/docs/concepts/storage/storage-classes/
https://kubernetes.io/docs/concepts/storage/persistent-volumes/
https://kubernetes.io/docs/concepts/storage/volumes/#local
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#persistentvolumeclaims
https://kubernetes.io/docs/concepts/overview/working-with-objects/namespaces/
https://kubernetes.io/docs/reference/access-authn-authz/rbac/
https://kubernetes.io/docs/concepts/extend-kubernetes/api-extension/custom-resources/
https://kubernetes.io/docs/concepts/extend-kubernetes/operator/
https://kubernetes.io/docs/reference/kubectl/overview/
https://www.enterprisedb.com/resources/platform-compatibility#pgk8s

PostgreSQL terminology

Instance : A Postgres server process running and listening on a pair "IP address(es)" and "TCP port" (usually 5432).

Primary : A PostgreSQL instance that can accept both read and write operations.

Replica : A PostgreSQL instance replicating from the only primary instance in a cluster and is kept updated by reading a stream of Write-Ahead Log (WAL)
records. A replica is also known as standby or secondary server. PostgreSQL relies on physical streaming replication (async/sync) and file-based log
shipping (async).

Hot Standby : PostgreSQL feature that allows a replica to accept read-only workloads.

Cluster : To be intended as High Availability (HA) Cluster: a set of PostgreSQL instances made up by a single primary and an optional arbitrary number of
replicas.

Replica Cluster : A EDB Postgres for Kubernetes Cluster that is in continuous recovery mode from a selected PostgreSQL cluster, normally residing
outside the Kubernetes cluster. It is a feature that enables multi-cluster deployments in private, public, hybrid, and multi-cloud contexts.

Designated Primary : A PostgreSQL standby instance in a replica cluster that is in continuous recovery from another PostgreSQL cluster and that is
designated to become primary in case the replica cluster becomes primary.

Superuser : In PostgreSQL a superuser is any role with both LOGIN and SUPERUSER privileges. For security reasons, EDB Postgres for Kubernetes
performs administrative tasks by connecting to the postgres database as the postgres user via peer authentication over the local Unix Domain
Socket.

WAL : Write-Ahead Logging (WAL) is a standard method for ensuring data integrity in database management systems.

PVC group : A PVC group in EDB Postgres for Kubernetes' terminology is a group of related PVCs belonging to the same PostgreSQL instance, namely the
main volume containing the PGDATA (storage) and the volume for WALs (walStorage).

RTO : Acronym for "recovery time objective", the amount of time a system can be unavailable without adversely impacting the application.

RPO : Acronym for "recovery point objective", a calculation of the level of acceptable data loss following a disaster recovery scenario.

Cloud terminology

Region : A region in the Cloud is an isolated and independent geographic area organized in availability zones. Zones within a region have very little round-
trip network latency.

Zone : An availability zone in the Cloud (also known as zone) is an area in a region where resources can be deployed. Usually, an availability zone
corresponds to a data center or an isolated building of the same data center.

What to do next

Now that you have familiarized with the terminology, you can decide to test EDB Postgres for Kubernetes on your laptop using a local cluster before
deploying the operator in your selected cloud environment.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 127

https://www.postgresql.org/docs/current/wal-intro.html

4 Use cases

EDB Postgres for Kubernetes has been designed to work with applications that reside in the same Kubernetes cluster, for a full cloud native experience.

However, it might happen that, while the database can be hosted inside a Kubernetes cluster, applications cannot be containerized at the same time and
need to run in a traditional environment such as a VM.

Case 1: Applications inside Kubernetes

In a typical situation, the application and the database run in the same namespace inside a Kubernetes cluster.

The application, normally stateless, is managed as a standard Deployment , with multiple replicas spread over different Kubernetes node, and internally
exposed through a ClusterIP service.

The service is exposed externally to the end user through an Ingress and the provider's load balancer facility, via HTTPS.

The application uses the backend PostgreSQL database to keep track of the state in a reliable and persistent way. The application refers to the read-write
service exposed by the Cluster resource defined by EDB Postgres for Kubernetes, which points to the current primary instance, through a TLS
connection. The Cluster resource embeds the logic of single primary and multiple standby architecture, hiding the complexity of managing a high
availability cluster in Postgres.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 128

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 129

Case 2: Applications outside Kubernetes

Another possible use case is to manage your PostgreSQL database inside Kubernetes, while having your applications outside of it (for example in a
virtualized environment). In this case, PostgreSQL is represented by an IP address (or host name) and a TCP port, corresponding to the defined Ingress
resource in Kubernetes (normally a LoadBalancer service type as explained in the "Service Management" page).

The application can still benefit from a TLS connection to PostgreSQL.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 130

5 Architecture

HintHint

For a deeper understanding, we recommend reading our article on the CNCF blog post titled "Recommended Architectures for PostgreSQL in
Kubernetes", which provides valuable insights into best practices and design considerations for PostgreSQL deployments in Kubernetes.

This documentation page provides an overview of the key architectural considerations for implementing a robust business continuity strategy when
deploying PostgreSQL in Kubernetes. These considerations include:

Deployments in Deployments in stretchedstretched vs. vs. non-stretchednon-stretched clusters clusters: Evaluating the differences between deploying in stretched clusters (across 3 or more
availability zones) versus non-stretched clusters (within a single availability zone).
Reservation of Reservation of postgres worker nodes worker nodes: Isolating PostgreSQL workloads by dedicating specific worker nodes to postgres tasks, ensuring
optimal performance and minimizing interference from other workloads.
PostgreSQL architectures within a single Kubernetes clusterPostgreSQL architectures within a single Kubernetes cluster: Designing effective PostgreSQL deployments within a single Kubernetes cluster to
meet high availability and performance requirements.
PostgreSQL architectures across Kubernetes clusters for disaster recoveryPostgreSQL architectures across Kubernetes clusters for disaster recovery: Planning and implementing PostgreSQL architectures that span multiple
Kubernetes clusters to provide comprehensive disaster recovery capabilities.

Synchronizing the state

PostgreSQL is a database management system and, as such, it needs to be treated as a stateful workloadstateful workload in Kubernetes. While stateless applications
mainly use traffic redirection to achieve High Availability (HA) and Disaster Recovery (DR), in the case of a database, state must be replicated in multiple
locations, preferably in a continuous and instantaneous way, by adopting either of the following two strategies:

storage-level replication, normally persistent volumes
application-level replication, in this specific case PostgreSQL

EDB Postgres for Kubernetes relies on application-level replication, for a simple reason: the PostgreSQL database management system comes with robust
and reliable built-in physical replicationphysical replication capabilities based on Write Ahead Log (WAL) shippingWrite Ahead Log (WAL) shipping, which have been used in production by millions of users all
over the world for over a decade.

PostgreSQL supports both asynchronous and synchronous streaming replication over the network, as well as asynchronous file-based log shipping
(normally used as a fallback option, for example, to store WAL files in an object store). Replicas are usually called standby servers and can also be used for
read-only workloads, thanks to the Hot Standby feature.

ImportantImportant

We recommend against storage-level replication with PostgreSQLWe recommend against storage-level replication with PostgreSQL, although EDB Postgres for Kubernetes allows you to adopt that strategy. For
more information, please refer to the talk given by Chris Milsted and Gabriele Bartolini at KubeCon NA 2022 entitled "Data On Kubernetes,
Deploying And Running PostgreSQL And Patterns For Databases In a Kubernetes Cluster" where this topic was covered in detail.

Kubernetes architecture

Kubernetes natively provides the possibility to span separate physical locations - also known as data centers, failure zones, or more frequently availabilityavailability
zoneszones - connected to each other via redundant, low-latency, private network connectivity.

Being a distributed system, the recommended minimum number of availability zones for a Kubernetes cluster is three (3), in order to make the control
plane resilient to the failure of a single zone. For details, please refer to "Running in multiple zones". This means that each data center is active at any timeeach data center is active at any time
and can run workloads simultaneously.

NoteNote

Most of the public Cloud Providers' managed Kubernetes services already provide 3 or more availability zones in each region.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 131

https://www.cncf.io/blog/2023/09/29/recommended-architectures-for-postgresql-in-kubernetes/
https://www.youtube.com/watch?v=99uSJXkKpeI&ab_channel=CNCF%255BCloudNativeComputingFoundation%255D
https://kubernetes.io/docs/setup/best-practices/multiple-zones/

Multi-availability zone Kubernetes clusters

The multi-availability zone Kubernetes architecture with three (3) or more zones is the one that we recommend for PostgreSQL usage. This scenario is
typical of Kubernetes services managed by Cloud Providers.

Such an architecture enables the EDB Postgres for Kubernetes operator to control the full lifecycle of a Cluster resource across the zones within a
single Kubernetes cluster, by treating all the availability zones as active: this includes, among other operations, scheduling the workloads in a declarative
manner (based on affinity rules, tolerations and node selectors), automated failover, self-healing, and updates. All will work seamlessly across the zones in
a single Kubernetes cluster.

Please refer to the "PostgreSQL architecture" section below for details on how you can design your PostgreSQL clusters within the same Kubernetes cluster
through shared-nothing deployments at the storage, worker node, and availability zone levels.

Additionally, you can leverage Kubernetes clusters to deploy distributed PostgreSQL topologies hosting "passive" PostgreSQL replica clusters in different
regions and managing them via declarative configuration. This setup is ideal for disaster recovery (DR), read-only operations, or cross-region availability.

ImportantImportant

Each operator deployment can only manage operations within its local Kubernetes cluster. For operations across Kubernetes clusters, such as
controlled switchover or unexpected failover, coordination must be handled manually (through GitOps, for example) or by using a higher-level
cluster management tool.

Single availability zone Kubernetes clusters

If your Kubernetes cluster has only one availability zone, EDB Postgres for Kubernetes still provides you with a lot of features to improve HA and DR
outcomes for your PostgreSQL databases, pushing the single point of failure (SPoF) to the level of the zone as much as possible - i.e. the zone must have an
outage before your EDB Postgres for Kubernetes clusters suffer a failure.

This scenario is typical of self-managed on-premise Kubernetes clusters, where only one data center is available.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 132

Single availability zone Kubernetes clusters are the only viable option when only two data centerstwo data centers are available within reach of a low-latency connection
(typically in the same metropolitan area). Having only two zones prevents the creation of a multi-availability zone Kubernetes cluster, which requires a
minimum of three zones. As a result, users must create two separate Kubernetes clusters in an active/passive configuration, with the second cluster
primarily used for Disaster Recovery (see the replica cluster feature).

HintHint

If you are at an early stage of your Kubernetes journey, please share this document with your infrastructure team. The two data centers setup
might be simply the result of a "lift-and-shift" transition to Kubernetes from a traditional bare-metal or VM based infrastructure, and the benefits
that Kubernetes offers in a 3+ zone scenario might not have been known, or addressed at the time the infrastructure architecture was designed.
Ultimately, a third physical location connected to the other two might represent a valid option to consider for organization, as it reduces the
overall costs of the infrastructure by moving the day-to-day complexity from the application level down to the physical infrastructure level.

Please refer to the "PostgreSQL architecture" section below for details on how you can design your PostgreSQL clusters within your single availability zone
Kubernetes cluster through shared-nothing deployments at the storage and worker node levels only. For HA, in such a scenario it becomes even more
important that the PostgreSQL instances be located on different worker nodes and do not share the same storage.

For DR, you can push the SPoF above the single zone, by using additional Kubernetes clusters to define a distributed topology hosting "passive" PostgreSQL
replica clusters. As with other Kubernetes workloads in this scenario, promotion of a Kubernetes cluster as primary must be done manually.

Through the replica cluster feature, you can define a distributed PostgreSQL topology and coordinate a controlled switchover between data centers by first
demoting the primary cluster and then promoting the replica cluster, without the need to re-clone the former primary. While failover is now fully
declarative, automated failover across Kubernetes clusters is not within EDB Postgres for Kubernetes' scope, as the operator can only function within a
single Kubernetes cluster.

ImportantImportant

EDB Postgres for Kubernetes provides all the necessary primitives and probes to coordinate PostgreSQL active/passive topologies across
different Kubernetes clusters through a higher-level operator or management tool.

Reserving nodes for PostgreSQL workloads

Whether you're operating in a multi-availability zone environment or, more critically, within a single availability zone, we strongly recommend isolating
PostgreSQL workloads by dedicating specific worker nodes exclusively to postgres in production. A Kubernetes worker node dedicated to running
PostgreSQL workloads is referred to as a Postgres nodePostgres node or postgres node. This approach ensures optimal performance and resource allocation for your
database operations.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 133

HintHint

As a general rule of thumb, deploy Postgres nodes in multiples of three—ideally with one node per availability zone. Three nodes is an optimal
number because it ensures that a PostgreSQL cluster with three instances (one primary and two standby replicas) is distributed across different
nodes, enhancing fault tolerance and availability.

In Kubernetes, this can be achieved using node labels and taints in a declarative manner, aligning with Infrastructure as Code (IaC) practices: labels ensure
that a node is capable of running postgres workloads, while taints help prevent any non- postgres workloads from being scheduled on that node.

ImportantImportant

This methodology is the most straightforward way to ensure that PostgreSQL workloads are isolated from other workloads in terms of both
computing resources and, when using locally attached disks, storage. While different PostgreSQL clusters may share the same node, you can
take this a step further by using labels and taints to ensure that a node is dedicated to a single instance of a specific Cluster .

Proposed node label

EDB Postgres for Kubernetes recommends using the node-role.kubernetes.io/postgres label. Since this is a reserved label
(*.kubernetes.io), it can only be applied after a worker node is created.

To assign the postgres label to a node, use the following command:

To ensure that a Cluster resource is scheduled on a postgres node, you must correctly configure the .spec.affinity.nodeSelector
stanza in your manifests. Here’s an example:

Proposed node taint

EDB Postgres for Kubernetes recommends using the node-role.kubernetes.io/postgres taint.

To assign the postgres taint to a node, use the following command:

To ensure that a Cluster resource is scheduled on a node with a postgres taint, you must correctly configure the
.spec.affinity.tolerations stanza in your manifests. Here’s an example:

kubectl label node <<NODE-NAME>> node-role.kubernetes.io/postgres=

spec::
 #
<snip>
 affinity::
 #
<snip>
 nodeSelector::
 node-role.kubernetes.io/postgres:: ""

kubectl taint node <<NODE-NAME>> node-role.kubernetes.io/postgres=:NoSchedule

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 134

PostgreSQL architecture

EDB Postgres for Kubernetes supports clusters based on asynchronous and synchronous streaming replication to manage multiple hot standby replicas
within the same Kubernetes cluster, with the following specifications:

One primary, with optional multiple hot standby replicas for HA

Available services for applications:

-rw : applications connect only to the primary instance of the cluster
-ro : applications connect only to hot standby replicas for read-only-workloads (optional)
-r : applications connect to any of the instances for read-only workloads (optional)

Shared-nothing architecture recommended for better resilience of the PostgreSQL cluster:

PostgreSQL instances should reside on different Kubernetes worker nodes and share only the network - as a result, instances should not
share the storage and preferably use local volumes attached to the node they run on
PostgreSQL instances should reside in different availability zones within the same Kubernetes cluster / region

ImportantImportant

You can configure the above services through the managed.services section in the Cluster configuration. This can be done by reducing
the number of services and selecting the type (default is ClusterIP). For more details, please refer to the "Service Management" section
below.

The below diagram provides a simplistic view of the recommended shared-nothing architecture for a PostgreSQL cluster spanning across 3 different
availability zones, running on separate nodes, each with dedicated local storage for PostgreSQL data.

spec::
 #
<snip>
 affinity::
 #
<snip>
 tolerations::
 -- key:: node-role.kubernetes.io/postgres
 operator::
Exists
 effect:: NoSchedule

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 135

EDB Postgres for Kubernetes automatically takes care of updating the above services if the topology of the cluster changes. For example, in case of
failover, it automatically updates the -rw service to point to the promoted primary, making sure that traffic from the applications is seamlessly redirected.

ReplicationReplication

Please refer to the "Replication" section for more information about how EDB Postgres for Kubernetes relies on PostgreSQL replication, including
synchronous settings.

Connecting from an applicationConnecting from an application

Please refer to the "Connecting from an application" section for information about how to connect to EDB Postgres for Kubernetes from a
stateless application within the same Kubernetes cluster.

Connection PoolingConnection Pooling

Please refer to the "Connection Pooling" section for information about how to take advantage of PgBouncer as a connection pooler, and create an
access layer between your applications and the PostgreSQL clusters.

Read-write workloads

Applications can decide to connect to the PostgreSQL instance elected as current primary by the Kubernetes operator, as depicted in the following diagram:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 136

Applications can use the -rw suffix service.

In case of temporary or permanent unavailability of the primary, for High Availability purposes EDB Postgres for Kubernetes will trigger a failover, pointing
the -rw service to another instance of the cluster.

Read-only workloads

ImportantImportant

Applications must be aware of the limitations that Hot Standby presents and familiar with the way PostgreSQL operates when dealing with these
workloads.

Applications can access hot standby replicas through the -ro service made available by the operator. This service enables the application to offload read-
only queries from the primary node.

The following diagram shows the architecture:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 137

https://www.postgresql.org/docs/current/hot-standby.html

Applications can also access any PostgreSQL instance through the -r service.

Deployments across Kubernetes clusters

InfoInfo

EDB Postgres for Kubernetes supports deploying PostgreSQL across multiple Kubernetes clusters through a feature that allows you to define a
distributed PostgreSQL topology using replica clusters, as described in this section.

In a distributed PostgreSQL cluster there can only be a single PostgreSQL instance acting as a primary at all times. This means that applications can only
write inside a single Kubernetes cluster, at any time.

However, for business continuity objectives it is fundamental to:

reduce global recovery point objectivesrecovery point objectives (RPO) by storing PostgreSQL backup data in multiple locations, regions and possibly using different
providers (Disaster Recovery)
reduce global recovery time objectivesrecovery time objectives (RTO) by taking advantage of PostgreSQL replication beyond the primary Kubernetes cluster (High
Availability)

In order to address the above concerns, EDB Postgres for Kubernetes introduces the concept of a PostgreSQL Topology that is distributed across different
Kubernetes clusters and is made up of a primary PostgreSQL cluster and one or more PostgreSQL replica clusters. This feature is called distributeddistributed
PostgreSQL topology with replica clustersPostgreSQL topology with replica clusters, and it enables multi-cluster deployments in private, public, hybrid, and multi-cloud contexts.

A replica cluster is a separate Cluster resource that is in continuous recovery, replicating from another source, either via WAL shipping from a WAL
archive or via streaming replication from a primary or a standby (cascading).

The diagram below depicts a PostgreSQL cluster spanning over two different Kubernetes clusters, where the primary cluster is in the first Kubernetes
cluster and the replica cluster is in the second. The second Kubernetes cluster acts as the company's disaster recovery cluster, ready to be activated in case
of disaster and unavailability of the first one.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 138

A replica cluster can have the same architecture as the primary cluster. Instead of a primary instance, a replica cluster has a designated primarydesignated primary instance,
which is a standby server with an arbitrary number of cascading standby servers in streaming replication (symmetric architecture).

The designated primary can be promoted at any time, transforming the replica cluster into a primary cluster capable of accepting write connections. This is
typically triggered by:

Human decision:Human decision: You choose to make the other PostgreSQL cluster (or the entire Kubernetes cluster) the primary. To avoid data loss and ensure that
the former primary can follow without being re-cloned (especially with large data sets), you first demote the current primary, then promote the
designated primary using the API provided by EDB Postgres for Kubernetes.
Unexpected failure:Unexpected failure: If the entire Kubernetes cluster fails, you might experience data loss, but you need to fail over to the other Kubernetes cluster by
promoting the PostgreSQL replica cluster.

WarningWarning

EDB Postgres for Kubernetes cannot perform any cross-cluster automated failover, as it does not have authority beyond a single Kubernetes
cluster. Such operations must be performed manually or delegated to a multi-cluster/federated cluster-aware authority.

ImportantImportant

EDB Postgres for Kubernetes allows you to control the distributed topology via declarative configuration, enabling you to automate these
procedures as part of your Infrastructure as Code (IaC) process, including GitOps.

In the example above, the designated primary receives WAL updates via streaming replication (primary_conninfo). As a fallback, it can retrieve WAL
segments from an object store using file-based WAL shipping—for instance, with the Barman Cloud plugin through restore_command and barman-
cloud-wal-restore .

EDB Postgres for Kubernetes allows you to define topologies with multiple replica clusters. You can also define replica clusters with a lower number of
replicas, and then increase this number when the cluster is promoted to primary.

Replica clustersReplica clusters

Please refer to the "Replica Clusters" section for more detailed information on how physical replica clusters operate and how to define a
distributed topology with read-only clusters across different Kubernetes clusters. This approach can significantly enhance your global disaster
recovery and high availability (HA) strategy.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 139

6 Installation and upgrades

OpenShiftOpenShift

For instructions on how to install Cloud Native PostgreSQL on Red Hat OpenShift Container Platform, please refer to the "OpenShift" section.

WarningWarning

OLM (via operatorhub.io is no longer supported as an installation method for EDB Postgres for Kubernetes.

Installation on Kubernetes

Obtaining an EDB subscription token

ImportantImportant

You must obtain an EDB subscription token to install EDB Postgres for Kubernetes. Without a token, you will not be able to access the EDB
private software repositories.

Installing EDB Postgres for Kubernetes requires an EDB Repos 2.0 token to gain access to the EDB private software repositories.

You can obtain the token by visiting your EDB Account Profile. You will have to sign in if you are not already logged in.

Your account profile page displays the token to use next to Repos 2.0 TokenRepos 2.0 Token label. By default, the token is obscured, click the "Show" button (an eye icon)
to reveal it.

Your token entitles you to access one of two repositories: standard or enterprise.

standard - Includes the operator and the EDB Postgres Extended operand images.
enterprise - Includes the operator and the EDB Postgres Advanced and EDB Postgres Extended operand images.

Set the relevant value, determined by your subscription, as an environment variable EDB_SUBSCRIPTION_PLAN .

EDB_SUBSCRIPTION_PLAN=enterprise

then set the Repos 2.0 token to an environment variable EDB_SUBSCRIPTION_TOKEN .

EDB_SUBSCRIPTION_TOKEN=<your-token>

WarningWarning

The token is sensitive information. Please ensure that you don't expose it to unauthorized users.

You can now proceed with the installation.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 140

https://operatorhub.io/
https://www.enterprisedb.com/accounts/profile

Using the Helm Chart

The operator can be installed using the provided Helm chart.

Directly using the operator manifest

Install the EDB pull secret

Before installing EDB Postgres for Kubernetes, you need to create a pull secret for EDB software in the postgresql-operator-system namespace.

The pull secret needs to be saved in the namespace where the operator will reside. Create the postgresql-operator-system namespace using this
command:

kubectl create namespace postgresql-operator-system

To create the pull secret itself, run the following command:

kubectl create secret -n postgresql-operator-system docker-registry edb-pull-secret \
 --docker-server=docker.enterprisedb.com \
 --docker-username=k8s_$EDB_SUBSCRIPTION_PLAN \
 --docker-password=$EDB_SUBSCRIPTION_TOKEN

Install the operator

Now that the pull-secret has been added to the namespace, the operator can be installed like any other resource in Kubernetes, through a YAML manifest
applied via kubectl .

There are two different manifests available depending on your subscription plan:

Standard: The latest standard operator manifest.
Enterprise: The latest enterprise operator manifest.

You can install the manifest for the latest version of the operator by running:

You can verify that with:

Using the cnp plugin for kubectl

You can use the cnp plugin to override the default configuration options that are in the static manifests.

For example, to generate the default latest manifest but change the watch namespaces to only be a specific namespace, you could run:

kubectl apply --server-side -f \
 https://get.enterprisedb.io/pg4k/pg4k-$EDB_SUBSCRIPTION_PLAN-1.26.0.yaml

kubectl rollout status deployment
\
 -n postgresql-operator-system postgresql-operator-controller-
manager

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 141

https://github.com/EnterpriseDB/edb-postgres-for-kubernetes-charts
https://get.enterprisedb.io/pg4k/pg4k-standard-1.26.0.yaml
https://get.enterprisedb.io/pg4k/pg4k-enterprise-1.26.0.yaml

kubectl cnp install generate \
 --watch-namespace "specific-namespace" \
 > cnp_for_specific_namespace.yaml

See the " cnp plugin" documentation for a more comprehensive example.

WarningWarning

If you are deploying EDB Postgres for Kubernetes on GKE and get an error (... failed to call webhook...), be aware that by default
traffic between worker nodes and control plane is blocked by the firewall except for a few specific ports, as explained in the official docs and by
this issue. You'll need to either change the targetPort in the webhook service, to be one of the allowed ones, or open the webhooks' port
(9443) on the firewall.

Details about the deployment

In Kubernetes, the operator is by default installed in the postgresql-operator-system namespace as a Kubernetes Deployment . The name of
this deployment depends on the installation method. When installed through the manifest or the cnp plugin, by default, it is called postgresql-
operator-controller-manager . When installed via Helm, by default, the deployment name is derived from the helm release name, appended with
the suffix -edb-postgres-for-kubernetes (e.g., <name>-edb-postgres-for-kubernetes).

NoteNote

With Helm you can customize the name of the deployment via the fullnameOverride field in the "values.yaml" file.

You can get more information using the describe command in kubectl :

As with any Deployment, it sits on top of a ReplicaSet and supports rolling upgrades. The default configuration of the EDB Postgres for Kubernetes operator
comes with a Deployment of a single replica, which is suitable for most installations. In case the node where the pod is running is not reachable anymore,
the pod will be rescheduled on another node.

If you require high availability at the operator level, it is possible to specify multiple replicas in the Deployment configuration - given that the operator
supports leader election. Also, you can take advantage of taints and tolerations to make sure that the operator does not run on the same nodes where the
actual PostgreSQL clusters are running (this might even include the control plane for self-managed Kubernetes installations).

Operator configurationOperator configuration

You can change the default behavior of the operator by overriding some default options. For more information, please refer to the "Operator
configuration" section.

$ kubectl get deployments -n postgresql-operator-
system
NAME READY UP-TO-DATE AVAILABLE
AGE
<<deployment-name>> 1/1 1 1
18m

kubectl describe deploy
\
 -n postgresql-operator-system
\
 <<deployment-name>>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 142

https://cloud.google.com/kubernetes-engine/docs/how-to/private-clusters#add_firewall_rules
https://github.com/cloudnative-pg/cloudnative-pg/issues/1360
https://helm.sh/docs/chart_template_guide/values_files/

Upgrades

ImportantImportant

Please carefully read the release notes before performing an upgrade as some versions might require extra steps.

Upgrading EDB Postgres for Kubernetes operator is a two-step process:

1. upgrade the controller and the related Kubernetes resources
2. upgrade the instance manager running in every PostgreSQL pod

Unless differently stated in the release notes, the first step is normally done by applying the manifest of the newer version for plain Kubernetes
installations, or using the native package manager of the used distribution (please follow the instructions in the above sections).

The second step is automatically triggered after updating the controller. By default, this initiates a rolling update of every deployed PostgreSQL cluster,
upgrading one instance at a time to use the new instance manager. The rolling update concludes with a switchover, which is governed by the
primaryUpdateStrategy option. The default value, unsupervised , completes the switchover automatically. If set to supervised , the user

must manually promote the new primary instance using the cnp plugin for kubectl .

Rolling updatesRolling updates

This process is discussed in-depth on the Rolling Updates page.

ImportantImportant

In case primaryUpdateStrategy is set to the default value of unsupervised , an upgrade of the operator will trigger a switchover on
your PostgreSQL cluster, causing a (normally negligible) downtime. If your PostgreSQL Cluster has only one instance, the instance will be
automatically restarted as supervised value is not supported for primaryUpdateStrategy . In either case, your applications will have
to reconnect to PostgreSQL.

The default rolling update behavior can be replaced with in-place updates of the instance manager. This approach does not require a restart of the
PostgreSQL instance, thereby avoiding a switchover within the cluster. This feature, which is disabled by default, is described in detail below.

Spread Upgrades

By default, all PostgreSQL clusters are rolled out simultaneously, which may lead to a spike in resource usage, especially when managing multiple
clusters. EDB Postgres for Kubernetes provides two configuration options at the operator level that allow you to introduce delays between cluster roll-outs
or even between instances within the same cluster, helping to distribute resource usage over time:

CLUSTERS_ROLLOUT_DELAY : Defines the number of seconds to wait between roll-outs of different PostgreSQL clusters (default: 0).
INSTANCES_ROLLOUT_DELAY : Defines the number of seconds to wait between roll-outs of individual instances within the same PostgreSQL

cluster (default: 0).

In-place updates of the instance manager

By default, EDB Postgres for Kubernetes issues a rolling update of the cluster every time the operator is updated. The new instance manager shipped with
the operator is added to each PostgreSQL pod via an init container.

However, this behavior can be changed via configuration to enable in-place updates of the instance manager, which is the PID 1 process that keeps the
container alive.

Internally, each instance manager in EDB Postgres for Kubernetes supports the injection of a new executable that replaces the existing one after
successfully completing an integrity verification phase and gracefully terminating all internal processes. Upon restarting with the new binary, the instance
manager seamlessly adopts the already running postmaster.

As a result, the PostgreSQL process is unaffected by the update, refraining from the need to perform a switchover. The other side of the coin, is that the Pod
is changed after the start, breaking the pure concept of immutability.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 143

You can enable this feature by setting the ENABLE_INSTANCE_MANAGER_INPLACE_UPDATES environment variable to 'true' in the operator
configuration.

The in-place upgrade process will not change the init container image inside the Pods. Therefore, the Pod definition will not reflect the current version of
the operator.

Compatibility among versions

EDB Postgres for Kubernetes follows semantic versioning. Every release of the operator within the same API version is compatible with the previous one.
The current API version is v1, corresponding to versions 1.x.y of the operator.

In addition to new features, new versions of the operator contain bug fixes and stability enhancements. Because of this, we strongly encourage users towe strongly encourage users to
upgrade to the latest version of the operatorupgrade to the latest version of the operator, as each version is released in order to maintain the most secure and stable Postgres environment.

EDB Postgres for Kubernetes currently releases new versions of the operator at least monthly. If you are unable to apply updates as each version becomes
available, we recommend upgrading through each version in sequential order to come current periodically and not skipping versions.

The release notes page contains a detailed list of the changes introduced in every released version of EDB Postgres for Kubernetes, and it must be read
before upgrading to a newer version of the software.

Most versions are directly upgradable and in that case, applying the newer manifest for plain Kubernetes installations or using the native package manager
of the chosen distribution is enough.

When versions are not directly upgradable, the old version needs to be removed before installing the new one. This won't affect user data but only the
operator itself.

Upgrading to 1.26.0 or 1.25.2

ImportantImportant

We strongly recommend that all EDB Postgres for Kubernetes users upgrade to version 1.26.0 or at least to the latest stable version of the minor
release you are currently using (namely 1.25.x).

In this release, the cnp plugin for kubectl transitions from an imperative to a declarative approach for cluster hibernation. The hibernate on and
hibernate off commands are now convenient shortcuts that apply declarative changes to enable or disable hibernation. The hibernate status

command has been removed, as its purpose is now fulfilled by the standard status command.

Upgrading to 1.25 from a previous minor version

WarningWarning

Every time you are upgrading to a higher minor release, make sure you go through the release notes and upgrade instructions of all the
intermediate minor releases. For example, if you want to move from 1.23.x to 1.25, make sure you go through the release notes and upgrade
instructions for 1.24 and 1.25.

No changes to existing 1.24 cluster configurations are required when upgrading to 1.25.

Upgrading to 1.24 from a previous minor version

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 144

From Replica Clusters to Distributed Topology

One of the key enhancements in EDB Postgres for Kubernetes 1.24.0 is the upgrade of the replica cluster feature.

The former replica cluster feature, now referred to as the "Standalone Replica Cluster," is no longer recommended for Disaster Recovery (DR) and High
Availability (HA) scenarios that span multiple Kubernetes clusters. Standalone replica clusters are best suited for read-only workloads, such as reporting,
OLAP, or creating development environments with test data.

For DR and HA purposes, EDB Postgres for Kubernetes now introduces the Distributed Topology strategy for replica clusters. This new strategy allows you
to build PostgreSQL clusters across private, public, hybrid, and multi-cloud environments, spanning multiple regions and potentially different cloud
providers. It also provides an API to control the switchover operation, ensuring that only one cluster acts as the primary at any given time.

This Distributed Topology strategy enhances resilience and scalability, making it a robust solution for modern, distributed applications that require high
availability and disaster recovery capabilities across diverse infrastructure setups.

You can seamlessly transition from a previous replica cluster configuration to a distributed topology by modifying all the Cluster resources involved in
the distributed PostgreSQL setup. Ensure the following steps are taken:

Configure the externalClusters section to include all the clusters involved in the distributed topology. We strongly suggest using the same
configuration across all Cluster resources for maintainability and consistency.
Configure the primary and source fields in the .spec.replica stanza to reflect the distributed topology. The primary field should
contain the name of the current primary cluster in the distributed topology, while the source field should contain the name of the cluster each
Cluster resource is replicating from. It is important to note that the enabled field, which was previously set to true or false , should now

be unset (default).

For more information, please refer to the "Distributed Topology" section for replica clusters.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 145

7 Quickstart

This section guides you through testing a PostgreSQL cluster on your local machine by deploying EDB Postgres for Kubernetes on a local Kubernetes
cluster using either Kind or Minikube.

Red Hat OpenShift Container Platform users can test the certified operator for EDB Postgres for Kubernetes on the Red Hat OpenShift Local (formerly Red
Hat CodeReady Containers).

WarningWarning

The instructions contained in this section are for demonstration, testing, and practice purposes only and must not be used in production.

Like any other Kubernetes application, EDB Postgres for Kubernetes is deployed using regular manifests written in YAML.

By following these instructions you should be able to start a PostgreSQL cluster on your local Kubernetes/Openshift installation and experiment with it.

ImportantImportant

Make sure that you have kubectl installed on your machine in order to connect to the Kubernetes cluster, or oc if using OpenShift Local.
Please follow the Kubernetes documentation on how to install kubectl or the Openshift documentation on how to install oc .

NoteNote

If you are running Openshift, use oc every time kubectl is mentioned in this documentation. kubectl commands are compatible with oc
ones.

Part 1 - Setup the local Kubernetes/Openshift Local playground

The first part is about installing Minikube, Kind, or OpenShift Local. Please spend some time reading about the systems and decide which one to proceed
with. After setting up one of them, please proceed with part 2.

We also provide instructions for setting up monitoring with Prometheus and Grafana for local testing/evaluation, in part 4

Minikube

Minikube is a tool that makes it easy to run Kubernetes locally. Minikube runs a single-node Kubernetes cluster inside a Virtual Machine (VM) on your
laptop for users looking to try out Kubernetes or develop with it day-to-day. Normally, it is used in conjunction with VirtualBox.

You can find more information in the official Kubernetes documentation on how to install Minikube in your local personal environment. When you installed
it, run the following command to create a minikube cluster:

This will create the Kubernetes cluster, and you will be ready to use it. Verify that it works with the following command:

You will see one node called minikube .

minikube start

kubectl get
nodes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 146

https://kind.sigs.k8s.io/
https://kubernetes.io/docs/setup/learning-environment/minikube/
https://developers.redhat.com/products/openshift-local/overview
https://kubernetes.io/docs/tasks/tools/install-kubectl/
https://docs.openshift.com/container-platform/4.6/cli_reference/openshift_cli/getting-started-cli.html
https://kubernetes.io/docs/tasks/tools/install-minikube

Kind

If you do not want to use a virtual machine hypervisor, then Kind is a tool for running local Kubernetes clusters using Docker container "nodes" (Kind stands
for "Kubernetes IN Docker" indeed).

Install kind on your environment following the instructions in the Quickstart, then create a Kubernetes cluster with:

OpenShift Local (formerly CodeReady Containers (CRC))

1. Download OpenShift Local and move the binary inside a directory in your PATH .

2. Run the following commands:

crc setup
crc start

The crc start output will explain how to proceed.

3. Execute the output of the crc oc-env command.

4. Log in as kubeadmin with the printed oc login command. You can also open the web console running crc console . User and password
are the same as for the oc login command.

5. OpenShift Local doesn't come with a StorageClass, so one has to be configured. Follow the Dynamic volume provisioning wiki page and install
rancher/local-path-provisioner .

Part 2: Install EDB Postgres for Kubernetes

Now that you have a Kubernetes installation up and running on your laptop, you can proceed with EDB Postgres for Kubernetes installation.

Unless specified in a cluster configuration file, EDB Postgres for Kubernetes will currently deploy Community Postgresql operands by default. See the
section Deploying EDB Postgres servers for more information.

Refer to the "Installation" section and then proceed with the deployment of a PostgreSQL cluster.

Part 3: Deploy a PostgreSQL cluster

Unless specified in a cluster configuration file, EDB Postgres for Kubernetes will currently deploy Community Postgresql operands by default. See the
section Deploying EDB Postgres servers for more information.

As with any other deployment in Kubernetes, to deploy a PostgreSQL cluster you need to apply a configuration file that defines your desired Cluster .

The cluster-example.yaml sample file defines a simple Cluster using the default storage class to allocate disk space:

kind create cluster --name
pg

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 147

https://kind.sigs.k8s.io/docs/user/quick-start
https://developers.redhat.com/products/openshift-local/overview
https://github.com/code-ready/crc/wiki/Dynamic-volume-provisioning
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example.yaml

There's moreThere's more

For more detailed information about the available options, please refer to the "API Reference" section.

In order to create the 3-node Community PostgreSQL cluster, you need to run the following command:

You can check that the pods are being created with the get pods command:

That will look for pods in the default namespace. To separate your cluster from other workloads on your Kubernetes installation, you could always create a
new namespace to deploy clusters on. Alternatively, you can use labels. The operator will apply the k8s.enterprisedb.io/cluster label on all
objects relevant to a particular cluster. For example:

ImportantImportant

Note that we are using k8s.enterprisedb.io/cluster as the label. In the past you may have seen or used postgresql . This label is
being deprecated, and will be dropped in the future. Please use k8s.enterprisedb.io/cluster .

Deploying EDB Postgres servers

By default, the operator will install the latest available minor version of the latest major version of Community PostgreSQL when the operator was
released. You can override this by setting the imageName key in the spec section of the Cluster definition. For example, to install EDB Postgres
Advanced 16.4 you can use:

And to install EDB Postgres Extended 16 you can use:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3

 storage::
 size::
1Gi

kubectl apply -f cluster-
example.yaml

kubectl get
pods

kubectl get pods -l
k8s.enterprisedb.io/cluster=<<CLUSTER>>

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 #
[...]
spec::
 #
[...]
 imageName:: docker.enterprisedb.com/k8s_enterprise/edb-postgres-advanced:16
 #
[...]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 148

ImportantImportant

The immutable infrastructure paradigm requires that you always point to a specific version of the container image. Never use tags like latest
or 13 in a production environment as it might lead to unpredictable scenarios in terms of update policies and version consistency in the cluster.
For strict deterministic and repeatable deployments, you can add the digests to the image name, through the <image>:<tag>@sha256:
<digestValue> format.

There's moreThere's more

There are some examples cluster configurations bundled with the operator. Please refer to the "Examples" section.

Part 4: Monitor clusters with Prometheus and Grafana

ImportantImportant

Installing Prometheus and Grafana is beyond the scope of this project. The instructions in this section are provided for experimentation and
illustration only.

In this section we show how to deploy Prometheus and Grafana for observability, and how to create a Grafana Dashboard to monitor EDB Postgres for
Kubernetes clusters, and a set of Prometheus Rules defining alert conditions.

We leverage the Kube-Prometheus stack Helm chart, which is maintained by the Prometheus Community. Please refer to the project website for additional
documentation and background.

The Kube-Prometheus-stack Helm chart installs the Prometheus Operator, including the Alert Manager, and a Grafana deployment.

We include a configuration file for the deployment of this Helm chart that will provide useful initial settings for observability of EDB Postgres for
Kubernetes clusters.

Installation

If you don't have Helm installed yet, please follow the instructions to install it in your system.

We need to add the prometheus-community helm chart repository, and then install the Kube Prometheus stack with our sample configuration
kube-stack-config.yaml .

We can accomplish this with the following commands:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 #
[...]
spec::
 #
[...]
 imageName:: docker.enterprisedb.com/k8s_enterprise/edb-postgres-extended:16
 #
[...]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 149

https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://github.com/prometheus-community
https://prometheus-operator.dev/
https://prometheus.io/docs/alerting/latest/alertmanager/
https://grafana.com/
https://helm.sh/
https://helm.sh/docs/intro/quickstart/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/monitoring/kube-stack-config.yaml

After completion, you will have Prometheus, Grafana, and Alert Manager, configured with the kube-stack-config.yaml file:

From the Prometheus installation, you will have the Prometheus Operator watching for anyany PodMonitor (see monitoring).
Alert Manager and Grafana are both enabled.

SeealsoSeealso

For further information about the above helm commands, refer to the helm install documentation.

You can see several Custom Resources have been created:

as well as a series of Services:

Viewing with Prometheus

At this point, a EDB Postgres for Kubernetes cluster deployed with monitoring activated would be observable via Prometheus.

For example, you could deploy a simple cluster with PodMonitor enabled:

helm repo add prometheus-community
\
 https://prometheus-community.github.io/helm-
charts

helm upgrade --install \
 -f
https://raw.githubusercontent.com/EnterpriseDB/docs/main/product_docs/docs/postgres_for_kubernetes/1/samples/mon
itoring/kube-stack-config.yaml \
 prometheus-community
\
 prometheus-community/kube-prometheus-
stack

% kubectl get
crds
NAME CREATED AT
…
alertmanagers.monitoring.coreos.com <<timestamp>>
…
prometheuses.monitoring.coreos.com <<timestamp>>
prometheusrules.monitoring.coreos.com <<timestamp>>
…

% kubectl get svc
NAME TYPE PORT((S))
… …
…
prometheus-community-grafana ClusterIP
80/TCP
prometheus-community-kube-alertmanager ClusterIP
9093/TCP
prometheus-community-kube-operator ClusterIP 443/TCP
prometheus-community-kube-prometheus ClusterIP
9090/TCP

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 150

https://helm.sh/docs/helm/helm_install/

To access Prometheus, port-forward the Prometheus service:

Then access the Prometheus console locally at: http://localhost:9090/

You should find a series of metrics relating to EDB Postgres for Kubernetes clusters. Please refer to the monitoring section for more information.

You can also monitor the EDB Postgres for Kubernetes operator by creating a PodMonitor to target it. See the relevant section in the monitoring page.

You can define some alerts by creating a prometheusRule :

You should see the default alerts now:

kubectl apply -f - <<EOF<<EOF

apiVersion: postgresql.k8s.enterprisedb.io/v1
kind: Cluster
metadata:
 name: cluster-with-
metrics
spec:
 instances:
3

storage:
 size:
1Gi

monitoring:
 enablePodMonitor: true
EOFEOF

kubectl port-forward svc/prometheus-community-kube-prometheus 9090

kubectl apply -f \

https://raw.githubusercontent.com/EnterpriseDB/docs/main/product_docs/docs/postgres_for_kubernetes/1/samples/mon
itoring/prometheusrule.yaml

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 151

http://localhost:9090/

In the Prometheus console, you can click on the Alerts menu to see the alerts we just installed.

Grafana Dashboard

In our installation so far, Grafana is deployed with no predefined dashboards.

To open Grafana, you can port-forward the grafana service:

and access Grafana locally at http://localhost:3000/ providing the credentials admin as username, prom-operator as password (defined in
kube-stack-config.yaml).

EDB Postgres for Kubernetes provides a default dashboard for Grafana in the dedicated grafana-dashboards repository. You can download the file
grafana-dashboard.json and manually import it via the GUI (menu: Dashboards > New > Import). You can now click on the EDB Postgres for
Kubernetes dashboard just created:

WarningWarning

Some graphs in the previous dashboard make use of metrics that are in alpha stage by the time this was created, like
kubelet_volume_stats_available_bytes and kubelet_volume_stats_capacity_bytes producing some graphs to show
No data .

Note that in our local setup, Prometheus and Grafana are configured to automatically discover and monitor any EDB Postgres for Kubernetes clusters
deployed with the Monitoring feature enabled.

% kubectl get prometheusrules
NAME
AGE
postgresql-operator-default-alerts 3m27s

kubectl port-forward svc/prometheus-community-grafana 3000:80

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 152

http://localhost:3000/
https://github.com/cloudnative-pg/grafana-dashboards
https://github.com/cloudnative-pg/grafana-dashboards/blob/main/charts/cluster/grafana-dashboard.json

8 PostgreSQL Configuration

Users that are familiar with PostgreSQL are aware of the existence of the following three files to configure an instance:

postgresql.conf : main run-time configuration file of PostgreSQL
pg_hba.conf : clients authentication file
pg_ident.conf : map external users to internal users

Due to the concepts of declarative configuration and immutability of the PostgreSQL containers, users are not allowed to directly touch those files.
Configuration is possible through the postgresql section of the Cluster resource definition by defining custom postgresql.conf ,
pg_hba.conf , and pg_ident.conf settings via the parameters , the pg_hba , and the pg_ident keys.

These settings are the same across all instances.

WarningWarning

Please don't use the ALTER SYSTEM query to change the configuration of the PostgreSQL instances in an imperative way. Changing some of
the options that are normally controlled by the operator might indeed lead to an unpredictable/unrecoverable state of the cluster. Moreover,
ALTER SYSTEM changes are not replicated across the cluster. See "Enabling ALTER SYSTEM" below for details.

A reference for custom settings usage is included in the samples, see cluster-example-custom.yaml .

WarningWarning

OpenShift users:OpenShift users: due to a current limitation of the OpenShift user interface, it is possible to change PostgreSQL settings from the YAML pane
only.

The postgresql section

The PostgreSQL instance in the pod starts with a default postgresql.conf file, to which these settings are automatically added:

listen_addresses = '*'
include custom.conf

The custom.conf file will contain the user-defined settings in the postgresql section, as in the following example:

PostgreSQL GUCs: Grand Unified ConfigurationPostgreSQL GUCs: Grand Unified Configuration

Refer to the PostgreSQL documentation for more information on the available parameters, also known as GUC (Grand Unified Configuration).
Please note that EDB Postgres for Kubernetes accepts only strings for the PostgreSQL parameters.

The content of custom.conf is automatically generated and maintained by the operator by applying the following sections in this order:

Global default parameters
Default parameters that depend on the PostgreSQL major version
User-provided parameters

 #
...
 postgresql::
 parameters::
 shared_buffers:: "1GB"
 #
...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 153

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-custom.yaml
https://www.postgresql.org/docs/current/runtime-config.html

Fixed parameters

The global default parametersglobal default parameters are:

archive_timeout = '5min'
dynamic_shared_memory_type = 'posix'
full_page_writes = 'on'
logging_collector = 'on'
log_destination = 'csvlog'
log_directory = '/controller/log'
log_filename = 'postgres'
log_rotation_age = '0'
log_rotation_size = '0'
log_truncate_on_rotation = 'false'
max_parallel_workers = '32'
max_replication_slots = '32'
max_worker_processes = '32'
shared_memory_type = 'mmap'
shared_preload_libraries = ''
ssl_max_protocol_version = 'TLSv1.3'
ssl_min_protocol_version = 'TLSv1.3'
wal_keep_size = '512MB'
wal_level = 'logical'
wal_log_hints = 'on'
wal_sender_timeout = '5s'
wal_receiver_timeout = '5s'

WarningWarning

It is your duty to plan for WAL segments retention in your PostgreSQL cluster and properly configure either wal_keep_size or
wal_keep_segments , depending on the server version, based on the expected and observed workloads.

Alternatively, if the only streaming replication clients are the replica instances running in the High Availability cluster, you can take advantage of
the replication slots feature, which adds support for replication slots at the cluster level. You can enable the feature with the
replicationSlots.highAvailability option (for more information, please refer to the "Replication" section.)

Without replication slots nor continuous backups in place, configuring wal_keep_size or wal_keep_segments is the only way to protect
standbys from falling out of sync. If a standby did fall out of sync it would produce error messages like: "could not receive data from
WAL stream: ERROR: requested WAL segment ************************ has already been removed" . This will
require you to dedicate a part of your PGDATA , or the volume dedicated to storing WAL files, to keep older WAL segments for streaming
replication purposes.

The following parameters are fixedfixed and exclusively controlled by the operator:

archive_command = '/controller/manager wal-archive %p'
hot_standby = 'true'
listen_addresses = '*'
port = '5432'
restart_after_crash = 'false'
ssl = 'on'
ssl_ca_file = '/controller/certificates/client-ca.crt'
ssl_cert_file = '/controller/certificates/server.crt'
ssl_key_file = '/controller/certificates/server.key'
unix_socket_directories = '/controller/run'

Since the fixed parameters are added at the end, they can't be overridden by the user via the YAML configuration. Those parameters are required for correct
WAL archiving and replication.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 154

Replication Settings

The primary_conninfo , restore_command , and recovery_target_timeline parameters are automatically managed by the operator
based on the instance's role within the cluster. These parameters are effectively applied only when the instance is operating as a replica.

primary_conninfo = 'host=<PRIMARY> user=postgres dbname=postgres'
recovery_target_timeline = 'latest'

The STANDBY_TCP_USER_TIMEOUT operator configuration setting, if specified, sets the tcp_user_timeout parameter on all standby instances
managed by the operator.

The tcp_user_timeout parameter determines how long transmitted data can remain unacknowledged before the TCP connection is forcibly closed.
Adjusting this value allows you to fine-tune the responsiveness of standby instances to network disruptions. For more details, refer to the PostgreSQL
documentation.

Log control settings

The operator requires PostgreSQL to output its log in CSV format, and the instance manager automatically parses it and outputs it in JSON format. For this
reason, all log settings in PostgreSQL are fixed and cannot be changed.

For further information, please refer to the "Logging" section.

Shared Preload Libraries

The shared_preload_libraries option in PostgreSQL exists to specify one or more shared libraries to be pre-loaded at server start, in the form of a
comma-separated list. Typically, it is used in PostgreSQL to load those extensions that need to be available to most database sessions in the whole system
(e.g. pg_stat_statements).

In EDB Postgres for Kubernetes the shared_preload_libraries option is empty by default. Although you can override the content of
shared_preload_libraries , we recommend that only expert Postgres users take advantage of this option.

ImportantImportant

In case a specified library is not found, the server fails to start, preventing EDB Postgres for Kubernetes from any self-healing attempt and
requiring manual intervention. Please make sure you always test both the extensions and the settings of shared_preload_libraries if
you plan to directly manage its content.

EDB Postgres for Kubernetes is able to automatically manage the content of the shared_preload_libraries option for some of the most used
PostgreSQL extensions (see the "Managed extensions" section below for details).

Specifically, as soon as the operator notices that a configuration parameter requires one of the managed libraries, it will automatically add the needed
library. The operator will also remove the library as soon as no actual parameter requires it.

ImportantImportant

Please always keep in mind that removing libraries from shared_preload_libraries requires a restart of all instances in the cluster in
order to be effective.

You can provide additional shared_preload_libraries via .spec.postgresql.shared_preload_libraries as a list of strings: the
operator will merge them with the ones that it automatically manages.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 155

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-TCP-USER-TIMEOUT

Managed extensions

As anticipated in the previous section, EDB Postgres for Kubernetes automatically manages the content in shared_preload_libraries for some
well-known and supported extensions. The current list includes:

auto_explain
pg_stat_statements
pgaudit
pg_failover_slots

Some of these libraries also require additional objects in a database before using them, normally views and/or functions managed via the CREATE
EXTENSION command to be run in a database (the DROP EXTENSION command typically removes those objects).

For such libraries, EDB Postgres for Kubernetes automatically handles the creation and removal of the extension in all databases that accept a connection
in the cluster, identified by the following query:

NoteNote

The above query also includes template databases like template1 .

ImportantImportant

With the introduction of declarative extensions in the Database CRD, you can now manage extensions directly. As a result, the managed
extensions feature may undergo significant changes in future versions of EDB Postgres for Kubernetes, and some functionalities might be
deprecated.

Enabling auto_explain

The auto_explain extension provides a means for logging execution plans of slow statements automatically, without having to manually run
EXPLAIN (helpful for tracking down un-optimized queries).

You can enable auto_explain by adding to the configuration a parameter that starts with auto_explain. as in the following example excerpt
(which automatically logs execution plans of queries that take longer than 10 seconds to complete):

NoteNote

Enabling auto_explain can lead to performance issues. Please refer to the auto explain documentation

Enabling pg_stat_statements

The pg_stat_statements extension is one of the most important capabilities available in PostgreSQL for real-time monitoring of queries.

You can enable pg_stat_statements by adding to the configuration a parameter that starts with pg_stat_statements. as in the following
example excerpt:

SELECTSELECT datname FROMFROM pg_database WHEREWHERE
datallowconn

 #
...
 postgresql::
 parameters::
 auto_explain.log_min_duration:: "10s"
 #
...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 156

https://www.postgresql.org/docs/current/auto-explain.html
https://www.postgresql.org/docs/current/auto-explain.html
https://www.postgresql.org/docs/current/pgstatstatements.html

As explained previously, the operator will automatically add pg_stat_statements to shared_preload_libraries and run CREATE
EXTENSION IF NOT EXISTS pg_stat_statements on each database, enabling you to run queries against the pg_stat_statements view.

Enabling pgaudit

The pgaudit extension provides detailed session and/or object audit logging via the standard PostgreSQL logging facility.

EDB Postgres for Kubernetes has transparent and native support for PGAudit on PostgreSQL clusters. For further information, please refer to the "PGAudit"
logs section.

You can enable pgaudit by adding to the configuration a parameter that starts with pgaudit. as in the following example excerpt:

Enabling pg_failover_slots

The pg_failover_slots extension by EDB ensures that logical replication slots can survive a failover scenario. Failovers are normally implemented
using physical streaming replication, like in the case of EDB Postgres for Kubernetes.

You can enable pg_failover_slots by adding to the configuration a parameter that starts with pg_failover_slots. : as explained above, the
operator will transparently manage the pg_failover_slots entry in the shared_preload_libraries option depending on this.

Please refer to the pg_failover_slots documentation for details on this extension.

Additionally, for each database that you intend to you use with pg_failover_slots you need to add an entry in the pg_hba section that enables
each replica to connect to the primary. For example, suppose that you want to use the app database with pg_failover_slots , you need to add this
entry in the pg_hba section:

The pg_hba section

 #
...
 postgresql::
 parameters::
 pg_stat_statements.max:: "10000"
 pg_stat_statements.track::
all
 #
...

#
postgresql::
 parameters::
 pgaudit.log:: "all, -
misc"
 pgaudit.log_catalog:: "off"
 pgaudit.log_parameter:: "on"
 pgaudit.log_relation:: "on"
#

 postgresql::
 pg_hba::
 -- hostssl app streaming_replica all
cert

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 157

https://www.pgaudit.org/
https://github.com/EnterpriseDB/pg_failover_slots
https://www.enterprisedb.com/docs/pg_extensions/pg_failover_slots

The pg_hba section

pg_hba is a list of PostgreSQL Host Based Authentication rules used to create the pg_hba.conf used by the pods.

ImportantImportant

See the PostgreSQL documentation for more information on pg_hba.conf .

Since the first matching rule is used for authentication, the pg_hba.conf file generated by the operator can be seen as composed of four sections:

1. Fixed rules
2. User-defined rules
3. Optional LDAP section
4. Default rules

Fixed rules:

local all all peer

hostssl postgres streaming_replica all cert
hostssl replication streaming_replica all cert
hostssl all cnp_pooler_pgbouncer all cert

Default rules:

host all all all <default-authentication-method>

From PostgreSQL 14 the default value of the password_encryption database parameter is set to scram-sha-256 . Because of that, the default
authentication method is scram-sha-256 from this PostgreSQL version.

PostgreSQL 13 and older will use md5 as the default authentication method.

The resulting pg_hba.conf will look like this:

local all all peer

hostssl postgres streaming_replica all cert
hostssl replication streaming_replica all cert

<user defined rules>
<user defined LDAP>

host all all all scram-sha-256 # (or md5 for PostgreSQL version <= 13)

Inside the cluster manifest, pg_hba lines are added as list items in .spec.postgresql.pg_hba , as in the following excerpt:

In the above example we are enabling access for the app user to the app database using MD5 password authentication (you can use scram-sha-
256 if you prefer) via a secure channel (hostssl).

 postgresql::
 pg_hba::
 -- hostssl app app 10.244.0.0/16
md5

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 158

https://www.postgresql.org/docs/current/auth-pg-hba-conf.html

LDAP Configuration

Under the postgres section of the cluster spec there is an optional ldap section available to define an LDAP configuration to be converted into a rule
added into the pg_hba.conf file.

This will support two modes: simple bind mode which requires specifying a server , prefix and suffix in the LDAP section and the
search+bind mode which requires specifying server , baseDN , binDN , and a bindPassword which is a secret containing the ldap password.

Additionally, in search+bind mode you have the option to specify a searchFilter or searchAttribute . If no searchAttribute is
specified the default one of uid will be used.

Additionally, both modes allow the specification of a scheme for ldapscheme and a port . Neither scheme nor port are required, however.

This section filled out for search+bind could look as follows:

The pg_ident section

pg_ident is a list of PostgreSQL User Name Maps that EDB Postgres for Kubernetes uses to generate and maintain the ident map file (known as
pg_ident.conf) inside the data directory.

ImportantImportant

See the PostgreSQL documentation for more information on pg_ident.conf .

The pg_ident.conf file written by the operator is made up of the following two sections:

1. Fixed rules
2. User-defined rules

Currently the only fixed rule, automatically generated by the operator, is:

local <postgres system user> postgres

The instance manager detects the user running the PostgreSQL instance and automatically adds a rule to map it to the postgres user in the database.

If the postgres user is not properly configured inside the container, the instance manager will allow any local user to connect and then log a warning
message like the following:

Unable to identify the current user. Falling back to insecure mapping.

The resulting pg_ident.conf will look like this:

postgresql::
 ldap::
 server:: 'openldap.default.svc.cluster.local'
 bindSearchAuth::
 baseDN:: 'ou=org,dc=example,dc=com'
 bindDN:: 'cn=admin,dc=example,dc=com'
 bindPassword::
 name:: 'ldapBindPassword'
 key:: 'data'
 searchAttribute:: 'uid'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 159

https://www.postgresql.org/docs/current/auth-username-maps.html

local <postgres system user> postgres

<user defined lines>

Inside the cluster manifest, pg_ident lines are added as list items in .spec.postgresql.pg_ident . For example:

Changing configuration

You can apply configuration changes by editing the postgresql section of the Cluster resource.

After the change, the cluster instances will immediately reload the configuration to apply the changes. If the change involves a parameter requiring a
restart, the operator will perform a rolling upgrade.

Enabling ALTER SYSTEM

EDB Postgres for Kubernetes strongly advocates employing the Cluster manifest as the exclusive method for altering the configuration of a PostgreSQL
cluster. This approach guarantees coherence across the entire high-availability cluster and aligns with best practices for Infrastructure-as-Code.

In EDB Postgres for Kubernetes the default configuration disables the use of ALTER SYSTEM on new Postgres clusters. This decision is rooted in the
recognition of potential risks associated with this command. To enable the use of ALTER SYSTEM , you can explicitly set
.spec.postgresql.enableAlterSystem to true .

WarningWarning

Proceed with caution when utilizing ALTER SYSTEM . This command operates directly on the connected instance and does not undergo
replication. EDB Postgres for Kubernetes assumes responsibility for certain fixed parameters and complete control over others, emphasizing the
need for careful consideration.

Starting from PostgreSQL 17, the .spec.postgresql.enableAlterSystem setting directly controls the allow_alter_system GUC in
PostgreSQL — a feature directly contributed by EDB Postgres for Kubernetes to PostgreSQL.

Prior to PostgreSQL 17, when .spec.postgresql.enableAlterSystem is set to false , the postgresql.auto.conf file is made read-only.
Consequently, any attempt to execute the ALTER SYSTEM command will result in an error. The error message might look like this:

output
ERROR: could not open file "postgresql.auto.conf": Permission denied

Dynamic Shared Memory settings

PostgreSQL supports a few implementations for dynamic shared memory management through the dynamic_shared_memory_type configuration
option. In EDB Postgres for Kubernetes we recommend to limit ourselves to any of the following two values:

posix : which relies on POSIX shared memory allocated using shm_open (default setting)
sysv : which is based on System V shared memory allocated via shmget

In PostgreSQL, this setting is particularly important for memory allocation in parallel queries. For details, please refer to this thread from the pgsql-
general mailing list.

 postgresql::
 pg_ident::
 -- "mymap /^(.*)@mydomain\\.com$ \\1"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 160

https://www.postgresql.org/docs/17/runtime-config-compatible.html#GUC-ALLOW-ALTER-SYSTEM
https://www.postgresql.org/docs/current/runtime-config-resource.html#GUC-DYNAMIC-SHARED-MEMORY-TYPE
https://www.postgresql.org/message-id/CA%252BhUKGJOj7qzDLxeFPVvto8YEWop6FSQoTYPO9Z6Ee%253Di-nPS_Q%2540mail.gmail.com

POSIX shared memory

The default setting of posix should be enough in most cases, considering that the operator automatically mounts a memory-bound EmptyDir volume
called shm under /dev/shm . You can verify the size of such volume inside the running Postgres container with:

You should get something similar to the following output:

shm on /dev/shm type tmpfs (rw,nosuid,nodev,noexec,relatime,size=******)

If you would like to set a maximum size for the shm volume, you can do so by setting the .spec.ephemeralVolumesSizeLimit.shm field in the
Cluster resource. For example:

System V shared memory

In case your Kubernetes cluster has a high enough value for the SHMMAX and SHMALL parameters, you can also set:

You can check the SHMMAX / SHMALL from inside a PostgreSQL container, by running:

For example:

------ Shared Memory Limits --------
max number of segments = 4096
max seg size (kbytes) = 18014398509465599
max total shared memory (kbytes) = 18014398509481980
min seg size (bytes) = 1

As you can see, the very high number of max total shared memory recommends setting dynamic_shared_memory_type to sysv .

An alternate method is to run:

mount || grep
shm

spec::
 ephemeralVolumesSizeLimit::
 shm::
1Gi

dynamic_shared_memory_type:: "sysv"

ipcs -lm

cat /proc/sys/kernel/shmall
cat /proc/sys/kernel/shmmax

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 161

Fixed parameters

Some PostgreSQL configuration parameters should be managed exclusively by the operator. The operator prevents the user from setting them using a
webhook.

Users are not allowed to set the following configuration parameters in the postgresql section:

allow_alter_system
allow_system_table_mods
archive_cleanup_command
archive_command
archive_mode
bonjour
bonjour_name
cluster_name
config_file
data_directory
data_sync_retry
edb_audit
edb_audit_destination
edb_audit_directory
edb_audit_filename
edb_audit_rotation_day
edb_audit_rotation_seconds
edb_audit_rotation_size
edb_audit_tag
edb_log_every_bulk_value
event_source
external_pid_file
hba_file
hot_standby
ident_file
jit_provider
listen_addresses
log_destination
log_directory
log_file_mode
log_filename
log_rotation_age
log_rotation_size
log_truncate_on_rotation
logging_collector
port
primary_conninfo
primary_slot_name
promote_trigger_file
recovery_end_command
recovery_min_apply_delay
recovery_target
recovery_target_action
recovery_target_inclusive
recovery_target_lsn
recovery_target_name
recovery_target_time
recovery_target_timeline
recovery_target_xid
restart_after_crash
restore_command
shared_preload_libraries
ssl
ssl_ca_file

ssl_cert_file

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 162

ssl_cert_file
ssl_crl_file
ssl_dh_params_file
ssl_ecdh_curve
ssl_key_file
ssl_passphrase_command
ssl_passphrase_command_supports_reload
ssl_prefer_server_ciphers
stats_temp_directory
synchronous_standby_names
syslog_facility
syslog_ident
syslog_sequence_numbers
syslog_split_messages
unix_socket_directories
unix_socket_group
unix_socket_permissions

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 163

9 Operator configuration

The operator for EDB Postgres for Kubernetes is installed from a standard deployment manifest and follows the convention over configuration paradigm.
While this is fine in most cases, there are some scenarios where you want to change the default behavior, such as:

setting a company license key that is shared by all deployments managed by the operator
defining annotations and labels to be inherited by all resources created by the operator and that are set in the cluster resource
defining a different default image for PostgreSQL or an additional pull secret

By default, the operator is installed in the postgresql-operator-system namespace as a Kubernetes Deployment called postgresql-
operator-controller-manager .

NoteNote

In the examples below we assume the default name and namespace for the operator deployment.

The behavior of the operator can be customized through a ConfigMap / Secret that is located in the same namespace of the operator deployment and
with postgresql-operator-controller-manager-config as the name.

ImportantImportant

Any change to the config's ConfigMap / Secret will not be automatically detected by the operator, - and as such, it needs to be reloaded (see
below). Moreover, changes only apply to the resources created after the configuration is reloaded.

ImportantImportant

The operator first processes the ConfigMap values and then the Secret’s, in this order. As a result, if a parameter is defined in both places, the one
in the Secret will be used.

Available options

The operator looks for the following environment variables to be defined in the ConfigMap / Secret :

Name Description

CERTIFICATE_D
URATION

Determines the lifetime of the generated certificates in days. Default is 90.

CLUSTERS_ROLL
OUT_DELAY

The duration (in seconds) to wait between the roll-outs of different clusters during an operator upgrade. This setting controls the
timing of upgrades across clusters, spreading them out to reduce system impact. The default value is 0 which means no delay
between PostgreSQL cluster upgrades.

CREATE_ANY_SE
RVICE

When set to true , will create -any service for the cluster. Default is false

EDB_LICENSE_K
EY

Default license key (to be used only if the cluster does not define one, and preferably in the Secret)

ENABLE_INSTAN
CE_MANAGER_INP
LACE_UPDATES

When set to true , enables in-place updates of the instance manager after an update of the operator, avoiding rolling updates
of the cluster (default false)

ENABLE_REDWOO
D_BY_DEFAULT

Enable the Redwood compatibility by default when using EPAS.

EXPIRING_CHEC
K_THRESHOLD

Determines the threshold, in days, for identifying a certificate as expiring. Default is 7.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 164

EXTERNAL_BACK
UP_ADDON_CONFI
GURATION

Configuration for the external-backup-adapter add-on. (See "Customizing the adapter" in Add-ons)

INCLUDE_PLUGI
NS

A comma-separated list of plugins to be always included in the Cluster's reconciliation.

INHERITED_ANN
OTATIONS

List of annotation names that, when defined in a Cluster metadata, will be inherited by all the generated resources,
including pods

INHERITED_LAB
ELS

List of label names that, when defined in a Cluster metadata, will be inherited by all the generated resources, including pods

INSTANCES_ROL
LOUT_DELAY

The duration (in seconds) to wait between roll-outs of individual PostgreSQL instances within the same cluster during an
operator upgrade. The default value is 0 , meaning no delay between upgrades of instances in the same PostgreSQL cluster.

KUBERNETES_CL
USTER_DOMAIN

Defines the domain suffix for service FQDNs within the Kubernetes cluster. If left unset, it defaults to "cluster.local".

MONITORING_QU
ERIES_CONFIGMA
P

The name of a ConfigMap in the operator's namespace with a set of default queries (to be specified under the key queries) to
be applied to all created Clusters

MONITORING_QU
ERIES_SECRET

The name of a Secret in the operator's namespace with a set of default queries (to be specified under the key queries) to be
applied to all created Clusters

OPERATOR_IMAG
E_NAME

The name of the operator image used to bootstrap Pods. Defaults to the image specified during installation.

POSTGRES_IMAG
E_NAME

The name of the PostgreSQL image used by default for new clusters. Defaults to the version specified in the operator.

PULL_SECRET_N
AME

Name of an additional pull secret to be defined in the operator's namespace and to be used to download images

STANDBY_TCP_U
SER_TIMEOUT

Defines the TCP_USER_TIMEOUT socket option for replication connections from standby instances to the primary. Default is
0 (system's default).

DRAIN_TAINTS
Specifies the taint keys that should be interpreted as indicators of node drain. By default, it includes the taints commonly
applied by kubectl, Cluster Autoscaler, and Karpenter: node.kubernetes.io/unschedulable ,
ToBeDeletedByClusterAutoscaler , karpenter.sh/disrupted , karpenter.sh/disruption .

Name Description

Values in INHERITED_ANNOTATIONS and INHERITED_LABELS support path-like wildcards. For example, the value example.com/* will match
both the value example.com/one and example.com/two .

When you specify an additional pull secret name using the PULL_SECRET_NAME parameter, the operator will use that secret to create a pull secret for
every created PostgreSQL cluster. That secret will be named <cluster-name>-pull .

The namespace where the operator looks for the PULL_SECRET_NAME secret is where you installed the operator. If the operator is not able to find that
secret, it will ignore the configuration parameter.

Defining an operator config map

The example below customizes the behavior of the operator, by defining a default license key (namely a company key), the label/annotation names to be
inherited by the resources created by any Cluster object that is deployed at a later time, by enabling in-place updates for the instance manager, and by
spreading upgrades.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 165

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-TCP-USER-TIMEOUT
https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/
https://github.com/kubernetes/autoscaler
https://github.com/aws/karpenter-provider-aws

Defining an operator secret

The example below customizes the behavior of the operator, by defining a default license key (namely a company key), the label/annotation names to be
inherited by the resources created by any Cluster object that is deployed at a later time, and by enabling in-place updates for the instance manager,
and by spreading upgrades.

Restarting the operator to reload configs

For the change to be effective, you need to recreate the operator pods to reload the config map. If you have installed the operator on Kubernetes using the
manifest you can do that by issuing:

kubectl rollout restart deployment \
 -n postgresql-operator-system \
 postgresql-operator-controller-manager

Otherwise, If you have installed the operator using OLM, or you are running on Openshift, run the following command specifying the namespace the
operator is installed in:

kubectl delete pods -n [NAMESPACE_NAME_HERE] \
 -l app.kubernetes.io/name=cloud-native-postgresql

apiVersion:: v1
kind:: ConfigMap
metadata::
 name:: postgresql-operator-controller-manager-
config
 namespace:: postgresql-operator-
system
data::
 CLUSTERS_ROLLOUT_DELAY:: '60'
 ENABLE_INSTANCE_MANAGER_INPLACE_UPDATES:: 'true'
 EDB_LICENSE_KEY::
<YOUR_BASE64_ENCODED_EDB_LICENSE_KEY_HERE>
 INHERITED_ANNOTATIONS:: categories
 INHERITED_LABELS:: environment, workload,
app
 INSTANCES_ROLLOUT_DELAY:: '10'

apiVersion:: v1
kind::
Secret
metadata::
 name:: postgresql-operator-controller-manager-
config
 namespace:: postgresql-operator-
system
type::
Opaque
stringData::
 CLUSTERS_ROLLOUT_DELAY:: '60'
 ENABLE_INSTANCE_MANAGER_INPLACE_UPDATES:: 'true'
 EDB_LICENSE_KEY::
<YOUR_BASE64_ENCODED_EDB_LICENSE_KEY_HERE>
 INHERITED_ANNOTATIONS:: categories
 INHERITED_LABELS:: environment, workload,
app
 INSTANCES_ROLLOUT_DELAY:: '10'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 166

WarningWarning

Customizations will be applied only to Cluster resources created after the reload of the operator deployment.

Following the above example, if the Cluster definition contains a categories annotation and any of the environment , workload , or app
labels, these will be inherited by all the resources generated by the deployment.

pprof HTTP Server

The operator can expose a PPROF HTTP server with the following endpoints on localhost:6060 :

/debug/pprof/ . Responds to a request for "/debug/pprof/" with an HTML page listing the available profiles
/debug/pprof/cmdline . Responds with the running program's command line, with arguments separated by NULL bytes.
/debug/pprof/profile . Responds with the pprof-formatted cpu profile. Profiling lasts for duration specified in seconds GET parameter, or for

30 seconds if not specified.
/debug/pprof/symbol . Looks up the program counters listed in the request, responding with a table mapping program counters to function

names.
/debug/pprof/trace . Responds with the execution trace in binary form. Tracing lasts for duration specified in seconds GET parameter, or for 1

second if not specified.

To enable the operator you need to edit the operator deployment add the flag --pprof-server=true .

You can do this by executing these commands:

kubectl edit deployment -n postgresql-operator-system postgresql-operator-controller-manager

Then on the edit page scroll down the container args and add --pprof-server=true , as in this example:

Save the changes; the deployment now will execute a roll-out, and the new pod will have the PPROF server enabled.

Once the pod is running you can exec inside the container by doing:

kubectl exec -ti -n postgresql-operator-system <pod name> -- bash

Once inside execute:

curl localhost:6060/debug/pprof/

 containers::
 -- args::
 -- controller
 -- --enable-leader-
election
 -- --config-map-name=postgresql-operator-controller-manager-
config
 -- --secret-name=postgresql-operator-controller-manager-
config
 -- --log-
level=info
 -- --pprof-server=true # relevant
line
 command::
 --
/manager

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 167

10 Instance pod configuration

Projected volumes

EDB Postgres for Kubernetes supports mounting custom files inside the Postgres pods through .spec.projectedVolumeTemplate . This ability is
useful for several Postgres features and extensions that require additional data files. In EDB Postgres for Kubernetes, the
.spec.projectedVolumeTemplate field is a projected volume template in Kubernetes that allows you to mount arbitrary data under the
/projected folder in Postgres pods.

This simple example shows how to mount an existing TLS secret (named sample-secret) as files into Postgres pods. The values for the secret keys
tls.crt and tls.key in sample-secret are mounted as files into the paths /projected/certificate/tls.crt and
/projected/certificate/tls.key in the Postgres pod.

You can find a complete example that uses a projected volume template to mount the secret and ConfigMap in the cluster-example-projected-volume.yaml
deployment manifest.

Ephemeral volumes

EDB Postgres for Kubernetes relies on ephemeral volumes for part of the internal activities. Ephemeral volumes exist for the sole duration of a pod's life,
without persisting across pod restarts.

Volume Claim Template for Temporary Storage

The operator uses by default an emptyDir volume, which can be customized by using the .spec.ephemeralVolumesSizeLimit field . This
can be overridden by specifying a volume claim template in the .spec.ephemeralVolumeSource field.

In the following example, a 1Gi ephemeral volume is set.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-projected-
volumes
spec::
 instances:: 3
 projectedVolumeTemplate::
 sources::
 -- secret::
 name:: sample-secret
 items::
 -- key:: tls.crt
 path::
certificate/tls.crt
 -- key:: tls.key
 path::
certificate/tls.key
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 168

https://kubernetes.io/docs/concepts/storage/projected-volumes/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-projected-volume.yaml
https://kubernetes.io/docs/concepts/storage/ephemeral-volumes/

Both .spec.emphemeralVolumeSource and .spec.ephemeralVolumesSizeLimit.temporaryData cannot be specified simultaneously.

Volume for shared memory

This volume is used as shared memory space for Postgres and as an ephemeral type but stored in memory. You can configure an upper bound on the size
using the .spec.ephemeralVolumesSizeLimit.shm field in the cluster spec. Use this field only in case of PostgreSQL running with posix
shared memory dynamic allocation.

Environment variables

You can customize some system behavior using environment variables. One example is the LDAPCONF variable, which can point to a custom LDAP
configuration file. Another example is the TZ environment variable, which represents the timezone used by the PostgreSQL container.

EDB Postgres for Kubernetes allows you to set custom environment variables using the env and the envFrom stanza of the cluster specification.

This example defines a PostgreSQL cluster using the Australia/Sydney timezone as the default cluster-level timezone:

The envFrom stanza can refer to ConfigMaps or secrets to use their content as environment variables:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-ephemeral-volume-
source
spec::
 instances:: 3
 ephemeralVolumeSource::
 volumeClaimTemplate::
 spec::
 accessModes:: [["ReadWriteOnce"]]
 # example storageClassName, replace with one existing in your Kubernetes
cluster
 storageClassName:: "scratch-storage-class"
 resources::
 requests::
 storage::
1Gi

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3

 env::
 -- name:: TZ
 value::
Australia/Sydney

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 169

The operator doesn't allow setting the following environment variables:

POD_NAME
NAMESPACE

Any environment variable whose name starts with PG .

Any change in the env or in the envFrom section triggers a rolling update of the PostgreSQL pods.

If the env or the envFrom section refers to a secret or a ConfigMap, the operator doesn't detect any changes in them and doesn't trigger a rollout. The
kubelet uses the same behavior with pods, and you must trigger the pod rollout manually.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3

 envFrom::
 -- configMapRef::
 name:: config-map-name
 -- secretRef::
 name:: secret-name

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 170

11 Examples

The examples show configuration files for setting up your PostgreSQL cluster.

ImportantImportant

These examples are for demonstration and experimentation purposes. You can execute them on a personal Kubernetes cluster with Minikube or
Kind, as described in Quick start.

ReferenceReference

For a list of available options, see API reference.

Basics

Basic clusterBasic cluster : cluster-example.yaml A basic example of a cluster.

EDB Postgres Advanced Server (EPAS) clusterEDB Postgres Advanced Server (EPAS) cluster : cluster-example-epas.yaml A basic example of an EPAS cluster.

EDB Postgres Extended (PGE) clusterEDB Postgres Extended (PGE) cluster : cluster-example-pge.yaml A basic example of a PGE cluster.

Custom clusterCustom cluster : cluster-example-custom.yaml A basic cluster that uses the default storage class and custom parameters for the
postgresql.conf and pg_hba.conf files.

Cluster with customized storage classCluster with customized storage class : cluster-storage-class.yaml : A basic cluster that uses a specified storage class of standard .

Cluster with persistent volume claim (PVC) template configuredCluster with persistent volume claim (PVC) template configured : cluster-pvc-template.yaml : A basic cluster with an explicit persistent volume
claim template.

Extended configuration exampleExtended configuration example : cluster-example-full.yaml : A cluster that sets most of the available options.

Bootstrap cluster with SQL filesBootstrap cluster with SQL files : cluster-example-initdb-sql-refs.yaml : A cluster example that executes a set of queries defined in a secret
and a ConfigMap right after the database is created.

Sample cluster with customized Sample cluster with customized pg_hba configuration configuration : cluster-example-pg-hba.yaml : A basic cluster that enables the user app to
authenticate using certificates.

Sample cluster with Secret and ConfigMap mounted using projected volume templateSample cluster with Secret and ConfigMap mounted using projected volume template : cluster-example-projected-volume.yaml A basic
cluster with the existing Secret and ConfigMap mounted into Postgres pod using projected volume mount.

Cluster with TDE enabledCluster with TDE enabled : cluster-example-tde.yaml an EPAS 15 cluster with TDE. Note that you will need access credentials to download the
image used.

Backups

Customized storage class and backupsCustomized storage class and backups : Prerequisites: Bucket storage must be available. The sample config is for AWS. Change it to suit your setup. :
cluster-storage-class-with-backup.yaml A cluster with backups configured.

BackupBackup : Prerequisites: cluster-storage-class-with-backup.yaml applied and healthy. : backup-example.yaml : An example of a
backup that runs against the previous sample.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 171

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-epas.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-pge.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-custom.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-storage-class.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-pvc-template.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-full.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-initdb-sql-refs.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-pg-hba.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-projected-volume.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-tde.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-storage-class-with-backup.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-storage-class-with-backup.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/backup-example.yaml

Simple cluster with backup configured for minioSimple cluster with backup configured for minio : Prerequisites: The configuration assumes minio is running and working. Update
backup.barmanObjectStore with your minio parameters or your cloud solution. : cluster-example-with-backup.yaml A basic cluster

with backups configured.

Simple cluster with backup configured for Scaleway Object StorageSimple cluster with backup configured for Scaleway Object Storage : Prerequisites: The configuration assumes a Scaleway Object Storage bucket exists.
Update backup.barmanObjectStore with your Scaleway parameters. : cluster-example-with-backup-scaleway.yaml A basic cluster
with backups configured to work with Scaleway Object Storage..

Replica clusters

Replica cluster by way of backup from an object storeReplica cluster by way of backup from an object store : Prerequisites: cluster-storage-class-with-backup.yaml applied and healthy, and a
backup cluster-example-trigger-backup.yaml applied and completed. : cluster-example-replica-from-backup-simple.yaml :
A replica cluster following a cluster with backup configured.

Replica cluster by way of volume snapshotReplica cluster by way of volume snapshot : Prerequisites: cluster-example-with-volume-snapshot.yaml applied and healthy, and a volume
snapshot backup-with-volume-snapshot.yaml applied and completed. : cluster-example-replica-from-volume-snapshot.yaml :
A replica cluster following a cluster with volume snapshot configured.

Replica cluster by way of streaming (pg_basebackup)Replica cluster by way of streaming (pg_basebackup) : Prerequisites: cluster-example.yaml applied and healthy. : cluster-example-
replica-streaming.yaml : A replica cluster following cluster-example with streaming replication.

PostGIS

PostGIS examplePostGIS example : postgis-example.yaml : An example of a PostGIS cluster. See PostGIS for details.

Managed roles

Cluster with declarative role managementCluster with declarative role management : cluster-example-with-roles.yaml : Declares a role with the managed stanza. Includes password
management with Kubernetes secrets.

Managed services

Cluster with managed servicesCluster with managed services : cluster-example-managed-services.yaml : Declares a service with the managed stanza. Includes default
service disabled and new rw service template of LoadBalancer type defined.

Declarative tablespaces

Cluster with declarative tablespacesCluster with declarative tablespaces : cluster-example-with-tablespaces.yaml

Cluster with declarative tablespaces and backupCluster with declarative tablespaces and backup : Prerequisites: The configuration assumes minio is running and working. Update
backup.barmanObjectStore with your minio parameters or your cloud solution. : cluster-example-with-tablespaces-backup.yaml

Restored cluster with tablespaces from object storeRestored cluster with tablespaces from object store : Prerequisites: The previous cluster applied and a base backup completed. Remember to update
bootstrap.recovery.backup.name with the backup name. : cluster-restore-with-tablespaces.yaml

For a list of available options, see API reference.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 172

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-backup.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-backup-scaleway.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-storage-class-with-backup.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-trigger-backup.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-replica-from-backup-simple.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-volume-snapshot.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/backup-with-volume-snapshot.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-replica-from-volume-snapshot.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-replica-streaming.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/postgis-example.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-roles.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-managed-services.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-tablespaces.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-tablespaces-backup.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-restore-with-tablespaces.yaml

Pooler configuration

Pooler with custom service configPooler with custom service config : pooler-external.yaml

Logical replication via declarative Publication and Subscription objects

Two test manifests contain everything needed to set up logical replication:

Source cluster with a publicationSource cluster with a publication : cluster-example-logical-source.yaml

Sets up a cluster, cluster-example with some tables created in the app database, and, importantly, adds replication to the app user. A publication
is created for the cluster on the app database: note that the publication will be reconciled only after the cluster's primary is up and running.

Destination cluster with a subscriptionDestination cluster with a subscription : Prerequisites: The source cluster with publication, defined as above. : cluster-example-logical-
destination.yaml

Sets up a cluster cluster-example-dest with:

the source cluster defined in the externalClusters stanza. Note that it uses the app role to connect, which assumes the source cluster
grants it replication privilege.
a bootstrap import of microservice type, with schemaOnly enabled

A subscription is created on the destination cluster: note that the subscription will be reconciled only after the destination cluster's primary is up and
running.

After both clusters have been reconciled, together with the publication and subscription objects, you can verify that that tables in the source cluster, and
the data in them, have been replicated in the destination cluster

In addition, there are some standalone example manifests:

A plain Publication targeting All TablesA plain Publication targeting All Tables : Prerequisites: an existing cluster cluster-example . : publication-example.yaml

A Publication with a constrained publication targetA Publication with a constrained publication target : Prerequisites: an existing cluster cluster-example . : publication-example-
objects.yaml

A plain SubscriptionA plain Subscription : Prerequisites: an existing cluster cluster-example set up as source, with a publication pub-all . A cluster cluster-
example-dest set up as a destination cluster, including the externalClusters stanza with connection parameters to the source cluster, including
a role with replication privilege. : subscription-example.yaml

All the above manifests create publications or subscriptions on the app database. The Database CRD offers a convenient way to create databases
declaratively. With it, logical replication could be set up for arbitrary databases. Which brings us to the next section.

Declarative management of Postgres databases

A plain DatabaseA plain Database : Prerequisites: an existing cluster cluster-example . : database-example.yaml

A Database with ICU local specificationsA Database with ICU local specifications : Prerequisites: an existing cluster cluster-example running Postgres 16 or more advanced. : database-
example-icu.yaml

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 173

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/pooler-external.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-logical-source.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-logical-destination.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/publication-example.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/publication-example-objects.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/subscription-example.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/database-example.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/database-example-icu.yaml

13 Bootstrap

NoteNote

When referring to "PostgreSQL cluster" in this section, the same concepts apply to both PostgreSQL and EDB Postgres Advanced Server, unless
differently stated.

This section describes the options available to create a new PostgreSQL cluster and the design rationale behind them. There are primarily two ways to
bootstrap a new cluster:

from scratch (initdb)
from an existing PostgreSQL cluster, either directly (pg_basebackup) or indirectly through a physical base backup (recovery)

The initdb bootstrap also provides the option to import one or more databases from an existing PostgreSQL cluster, even if it's outside Kubernetes or
running a different major version of PostgreSQL. For more detailed information about this feature, please refer to the "Importing Postgres databases"
section.

ImportantImportant

Bootstrapping from an existing cluster enables the creation of a replica clusterreplica cluster—an independent PostgreSQL cluster that remains in continuous
recovery, stays synchronized with the source cluster, and accepts read-only connections. For more details, refer to the Replica Cluster section.

WarningWarning

EDB Postgres for Kubernetes requires both the postgres user and database to always exist. Using the local Unix Domain Socket, it needs to
connect as the postgres user to the postgres database via peer authentication in order to perform administrative tasks on the cluster.
DO NOT DELETEDO NOT DELETE the postgres user or the postgres database!!!

InfoInfo

EDB Postgres for Kubernetes is gradually introducing support for Kubernetes' native VolumeSnapshot API for both incremental and
differential copy in backup and recovery operations - if supported by the underlying storage classes. Please see "Recovery from Volume Snapshot
objects" for details.

The bootstrap section

The bootstrap method can be defined in the bootstrap section of the cluster specification. EDB Postgres for Kubernetes currently supports the
following bootstrap methods:

initdb : initialize a new PostgreSQL cluster (default)
recovery : create a PostgreSQL cluster by restoring from a base backup of an existing cluster and, if needed, replaying all the available WAL files

or up to a given point in time
pg_basebackup : create a PostgreSQL cluster by cloning an existing one of the same major version using pg_basebackup through the

streaming replication protocol. This method is particularly useful for migrating databases to EDB Postgres for Kubernetes, although meeting all
requirements can be challenging. Be sure to review the warnings in the pg_basebackup subsection carefully.

In contrast to the initdb method, both recovery and pg_basebackup create a new cluster based on another one (either offline or online) and can
be used to spin up replica clusters. They both rely on the definition of external clusters. Refer to the replica cluster section for more information.

Given the amount of possible backup methods and combinations of backup storage that the EDB Postgres for Kubernetes operator provides for
recovery , please refer to the dedicated "Recovery" section for guidance on each method.

API referenceAPI reference

Please refer to the "API reference for the bootstrap section for more information.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 174

https://github.com/cloudnative-pg/cloudnative-pg/issues/2081

The externalClusters section

The externalClusters section of the cluster manifest can be used to configure access to one or more PostgreSQL clusters as sources. The primary use
cases include:

1. Importing Databases:Importing Databases: Specify an external source to be utilized during the importation of databases via logical backup and restore, as part of the
initdb bootstrap method.

2. Cross-Region Replication:Cross-Region Replication: Define a cross-region PostgreSQL cluster employing physical replication, capable of extending across distinct Kubernetes
clusters or traditional VM/bare-metal environments.

3. Recovery from Physical Base Backup:Recovery from Physical Base Backup: Recover, fully or at a given Point-In-Time, a PostgreSQL cluster by referencing a physical base backup.

InfoInfo

Ongoing development will extend the functionality of externalClusters to accommodate additional use cases, such as logical replication
and foreign servers in future releases.

As far as bootstrapping is concerned, externalClusters can be used to define the source PostgreSQL cluster for either the pg_basebackup
method or the recovery one. An external cluster needs to have:

a name that identifies the external cluster, to be used as a reference via the source option

at least one of the following:

information about streaming connection
information about the recovery object storerecovery object store, which is a Barman Cloud compatible object store that contains:

the WAL archive (required for Point In Time Recovery)
the catalog of physical base backups for the Postgres cluster

NoteNote

A recovery object store is normally an AWS S3, Azure Blob Storage, or Google Cloud Storage source that is managed by Barman Cloud.

When only the streaming connection is defined, the source can be used for the pg_basebackup method. When only the recovery object store is defined,
the source can be used for the recovery method. When both are defined, any of the two bootstrap methods can be chosen. The following table
summarizes your options:

Content of externalClusters pg_basebackup recovery

Only streaming ✓
Only object store ✓
Streaming and object store ✓ ✓

Furthermore, in case of pg_basebackup or full recovery point in time, the cluster is eligible for replica cluster mode. This means that the cluster is
continuously fed from the source, either via streaming, via WAL shipping through the PostgreSQL's restore_command , or any of the two.

API referenceAPI reference

Please refer to the "API reference for the externalClusters section for more information.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 175

Password files

Whenever a password is supplied within an externalClusters entry, EDB Postgres for Kubernetes autonomously manages a PostgreSQL password
file for it, residing at /controller/external/NAME/pgpass in each instance.

This approach enables EDB Postgres for Kubernetes to securely establish connections with an external server without exposing any passwords in the
connection string. Instead, the connection safely references the aforementioned file through the passfile connection parameter.

Bootstrap an empty cluster (initdb)

The initdb bootstrap method is used to create a new PostgreSQL cluster from scratch. It is the default one unless specified differently.

The following example contains the full structure of the initdb configuration:

The above example of bootstrap will:

1. create a new PGDATA folder using PostgreSQL's native initdb command
2. create an unprivileged user named app
3. set the password of the latter (app) using the one in the app-secret secret (make sure that username matches the same name of the

owner)
4. create a database called app owned by the app user.

Thanks to the convention over configuration paradigm, you can let the operator choose a default database name (app) and a default application user
name (same as the database name), as well as randomly generate a secure password for both the superuser and the application user in PostgreSQL.

Alternatively, you can generate your password, store it as a secret, and use it in the PostgreSQL cluster - as described in the above example.

The supplied secret must comply with the specifications of the kubernetes.io/basic-auth type. As a result, the username in the secret must
match the one of the owner (for the application secret) and postgres for the superuser one.

The following is an example of a basic-auth secret:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
initdb
spec::
 instances:: 3

 bootstrap::
 initdb::
 database::
app
 owner::
app
 secret::
 name:: app-secret

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 176

https://www.postgresql.org/docs/current/libpq-pgpass.html
https://kubernetes.io/docs/concepts/configuration/secret/#basic-authentication-secret

The application database is the one that should be used to store application data. Applications should connect to the cluster with the user that owns the
application database.

ImportantImportant

If you need to create additional users, please refer to "Declarative database role management".

In case you don't supply any database name, the operator will proceed by convention and create the app database, and adds it to the cluster definition
using a defaulting webhook. The user that owns the database defaults to the database name instead.

The application user is not used internally by the operator, which instead relies on the superuser to reconcile the cluster with the desired status.

Passing Options to initdb

The PostgreSQL data directory is initialized using the initdb PostgreSQL command.

EDB Postgres for Kubernetes enables you to customize the behavior of initdb to modify settings such as default locale configurations and data
checksums.

WarningWarning

EDB Postgres for Kubernetes acts only as a direct proxy to initdb for locale-related options, due to the ongoing and significant enhancements
in PostgreSQL's locale support. It is your responsibility to ensure that the correct options are provided, following the PostgreSQL documentation,
and to verify that the bootstrap process completes successfully.

To include custom options in the initdb command, you can use the following parameters:

builtinLocale : When builtinLocale is set to a value, EDB Postgres for Kubernetes passes it to the --builtin-locale option in initdb . This
option controls the builtin locale, as defined in "Locale Support" from the PostgreSQL documentation (default: empty). Note that this option requires
localeProvider to be set to builtin . Available from PostgreSQL 17.

dataChecksums : When dataChecksums is set to true , EDB Postgres for Kubernetes invokes the -k option in initdb to enable checksums on
data pages and help detect corruption by the I/O system - that would otherwise be silent (default: false).

encoding : When encoding set to a value, EDB Postgres for Kubernetes passes it to the --encoding option in initdb , which selects the encoding
of the template database (default: UTF8).

icuLocale : When icuLocale is set to a value, EDB Postgres for Kubernetes passes it to the --icu-locale option in initdb . This option controls
the ICU locale, as defined in "Locale Support" from the PostgreSQL documentation (default: empty). Note that this option requires localeProvider to
be set to icu . Available from PostgreSQL 15.

icuRules : When icuRules is set to a value, EDB Postgres for Kubernetes passes it to the --icu-rules option in initdb . This option controls the
ICU locale, as defined in "Locale Support" from the PostgreSQL documentation (default: empty). Note that this option requires localeProvider to be
set to icu . Available from PostgreSQL 16.

locale : When locale is set to a value, EDB Postgres for Kubernetes passes it to the --locale option in initdb . This option controls the locale, as

apiVersion:: v1
data::
 username:: YXBw
 password:: cGFzc3dvcmQ=
kind::
Secret
metadata::
 name:: app-secret
type:: kubernetes.io/basic-auth

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 177

https://www.postgresql.org/docs/current/app-initdb.html
https://www.postgresql.org/docs/current/locale.html
https://www.postgresql.org/docs/current/locale.html
https://www.postgresql.org/docs/current/locale.html

locale : When locale is set to a value, EDB Postgres for Kubernetes passes it to the --locale option in initdb . This option controls the locale, as
defined in "Locale Support" from the PostgreSQL documentation. By default, the locale parameter is empty. In this case, environment variables such as
LANG are used to determine the locale. Be aware that these variables can vary between container images, potentially leading to inconsistent behavior.

localeCollate : When localeCollate is set to a value, EDB Postgres for Kubernetes passes it to the --lc-collate option in initdb . This option
controls the collation order (LC_COLLATE subcategory), as defined in "Locale Support" from the PostgreSQL documentation (default: C).

localeCType : When localeCType is set to a value, EDB Postgres for Kubernetes passes it to the --lc-ctype option in initdb . This option
controls the collation order (LC_CTYPE subcategory), as defined in "Locale Support" from the PostgreSQL documentation (default: C).

localeProvider : When localeProvider is set to a value, EDB Postgres for Kubernetes passes it to the --locale-provider option in initdb .
This option controls the locale provider, as defined in "Locale Support" from the PostgreSQL documentation (default: empty, which means libc for
PostgreSQL). Available from PostgreSQL 15.

walSegmentSize : When walSegmentSize is set to a value, EDB Postgres for Kubernetes passes it to the --wal-segsize option in initdb
(default: not set - defined by PostgreSQL as 16 megabytes).

NoteNote

The only two locale options that EDB Postgres for Kubernetes implements during the initdb bootstrap refer to the LC_COLLATE and
LC_TYPE subcategories. The remaining locale subcategories can be configured directly in the PostgreSQL configuration, using the
lc_messages , lc_monetary , lc_numeric , and lc_time parameters.

The following example enables data checksums and sets the default encoding to LATIN1 :

WarningWarning

EDB Postgres for Kubernetes supports another way to customize the behavior of the initdb invocation, using the options subsection.
However, given that there are options that can break the behavior of the operator (such as --auth or -d), this technique is deprecated and
will be removed from future versions of the API.

Executing Queries After Initialization

You can specify a custom list of queries that will be executed once, immediately after the cluster is created and configured. These queries will be executed
as the superuser (postgres) against three different databases, in this specific order:

1. The postgres database (postInit section)
2. The template1 database (postInitTemplate section)

The application database (postInitApplication section)

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
initdb
spec::
 instances:: 3

 bootstrap::
 initdb::
 database::
app
 owner::
app
 dataChecksums:: true
 encoding:: 'LATIN1'
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 178

https://www.postgresql.org/docs/current/locale.html
https://www.postgresql.org/docs/current/locale.html
https://www.postgresql.org/docs/current/locale.html
https://www.postgresql.org/docs/current/locale.html

3. The application database (postInitApplication section)

For each of these sections, EDB Postgres for Kubernetes provides two ways to specify custom queries, executed in the following order:

As a list of SQL queries in the cluster's definition (postInitSQL , postInitTemplateSQL , and postInitApplicationSQL stanzas)
As a list of Secrets and/or ConfigMaps, each containing a SQL script to be executed (postInitSQLRefs , postInitTemplateSQLRefs , and
postInitApplicationSQLRefs stanzas). Secrets are processed before ConfigMaps.

Objects in each list will be processed sequentially.

WarningWarning

Use the postInit , postInitTemplate , and postInitApplication options with extreme care, as queries are run as a superuser and
can disrupt the entire cluster. An error in any of those queries will interrupt the bootstrap phase, leaving the cluster incomplete and requiring
manual intervention.

ImportantImportant

Ensure the existence of entries inside the ConfigMaps or Secrets specified in postInitSQLRefs , postInitTemplateSQLRefs , and
postInitApplicationSQLRefs , otherwise the bootstrap will fail. Errors in any of those SQL files will prevent the bootstrap phase from

completing successfully.

The following example runs a single SQL query as part of the postInitSQL stanza:

The example below relies on postInitApplicationSQLRefs to specify a secret and a ConfigMap containing the queries to run after the initialization
on the application database:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
initdb
spec::
 instances:: 3

 bootstrap::
 initdb::
 database::
app
 owner::
app
 dataChecksums:: true
 localeCollate:: 'en_US'
 localeCType:: 'en_US'
 postInitSQL::
 -- CREATE DATABASE
angus
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 179

NoteNote

Within SQL scripts, each SQL statement is executed in a single exec on the server according to the PostgreSQL semantics. Comments can be
included, but internal commands like psql cannot.

Compatibility Features

EDB Postgres Advanced Server adds many compatibility features to the plain community PostgreSQL. You can find more information about that in the EDB
Postgres Advanced Server.

Those features are already enabled during cluster creation on EPAS and are not supported on the community PostgreSQL image. To disable them you can
use the redwood flag in the initdb section like in the following example:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
initdb
spec::
 instances:: 3

 bootstrap::
 initdb::
 database::
app
 owner::
app
 postInitApplicationSQLRefs::
 secretRefs::
 -- name:: my-
secret
 key:: secret.sql
 configMapRefs::
 -- name:: my-
configmap
 key:: configmap.sql
 storage::
 size::
1Gi

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
initdb
spec::
 instances:: 3
 imageName:: <EPAS-based
image>

 bootstrap::
 initdb::
 database::
app
 owner::
app
 redwood:: false
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 180

https://www.postgresql.org/docs/current/protocol-flow.html#PROTOCOL-FLOW-MULTI-STATEMENT
https://www.enterprisedb.com/docs/epas/latest/

Bootstrap from another cluster

EDB Postgres for Kubernetes enables bootstrapping a cluster starting from another one of the same major version. This operation can be carried out either
connecting directly to the source cluster via streaming replication (pg_basebackup), or indirectly via an existing physical base backup (recovery).

The source cluster must be defined in the externalClusters section, identified by name (our recommendation is to use the same name of the
origin cluster).

ImportantImportant

By default the recovery method strictly uses the name of the cluster in the externalClusters section to locate the main folder of the
backup data within the object store, which is normally reserved for the name of the server. Backup plugins provide ways to specify a different
one. For example, the Barman Cloud Plugin provides the serverName parameter (by default assigned to the value of name in the external
cluster definition).

Bootstrap from a backup (recovery)

Given the variety of backup methods and combinations of backup storage options provided by the EDB Postgres for Kubernetes operator for recovery ,
please refer to the dedicated "Recovery" section for detailed guidance on each method.

Bootstrap from a live cluster (pg_basebackup)

The pg_basebackup bootstrap mode allows you to create a new cluster (target) as an exact physical copy of an existing and binary-compatiblebinary-compatible
PostgreSQL instance (source) managed by EDB Postgres for Kubernetes, using a valid streaming replication connection. The source instance can either be a
primary or a standby PostgreSQL server. It’s crucial to thoroughly review the requirements section below, as the pros and cons of PostgreSQL physical
replication fully apply.

The primary use cases for this method include:

Reporting and business intelligence clusters that need to be regenerated periodically (daily, weekly)
Test databases containing live data that require periodic regeneration (daily, weekly, monthly) and anonymization
Rapid spin-up of a standalone replica cluster
Physical migrations of EDB Postgres for Kubernetes clusters to different namespaces or Kubernetes clusters

ImportantImportant

Avoid using this method, based on physical replication, to migrate an existing PostgreSQL cluster outside of Kubernetes into EDB Postgres for
Kubernetes, unless you are completely certain that all requirements are met and the operation has been thoroughly tested. The EDB Postgres for
Kubernetes community does not endorse this approach for such use cases, and recommends using logical import instead. It is exceedingly rare
that all requirements for physical replication are met in a way that seamlessly works with EDB Postgres for Kubernetes.

WarningWarning

In its current implementation, this method clones the source PostgreSQL instance, thereby creating a snapshot. Once the cloning process has
finished, the new cluster is immediately started. Refer to "Current limitations" for more details.

Similar to the recovery bootstrap method, once the cloning operation is complete, the operator takes full ownership of the target cluster, starting from
the first instance. This includes overriding certain configuration parameters as required by EDB Postgres for Kubernetes, resetting the superuser password,
creating the streaming_replica user, managing replicas, and more. The resulting cluster operates independently from the source instance.

ImportantImportant

Configuring the network connection between the target and source instances lies outside the scope of EDB Postgres for Kubernetes
documentation, as it depends heavily on the specific context and environment.

The streaming replication client on the target instance, managed transparently by pg_basebackup , can authenticate on the source instance using one

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 181

https://cloudnative-pg.io/plugin-barman-cloud/docs/parameters/

The streaming replication client on the target instance, managed transparently by pg_basebackup , can authenticate on the source instance using one
of the following methods:

1. Username/password
2. TLS client certificate

Both authentication methods are detailed below.

Requirements

The following requirements apply to the pg_basebackup bootstrap method:

target and source must have the same hardware architecture
target and source must have the same major PostgreSQL version
target and source must have the same tablespaces
source must be configured with enough max_wal_senders to grant access from the target for this one-off operation by providing at least one
walsender for the backup plus one for WAL streaming
the network between source and target must be configured to enable the target instance to connect to the PostgreSQL port on the source instance
source must have a role with REPLICATION LOGIN privileges and must accept connections from the target instance for this role in
pg_hba.conf , preferably via TLS (see "About the replication user" below)

target must be able to successfully connect to the source PostgreSQL instance using a role with REPLICATION LOGIN privileges

SeealsoSeealso

For further information, please refer to the "Planning" section for Warm Standby, the pg_basebackup page and the "High Availability, Load
Balancing, and Replication" chapter in the PostgreSQL documentation.

About the replication user

As explained in the requirements section, you need to have a user with either the SUPERUSER or, preferably, just the REPLICATION privilege in the
source instance.

If the source database is created with EDB Postgres for Kubernetes, you can reuse the streaming_replica user and take advantage of client TLS
certificates authentication (which, by default, is the only allowed connection method for streaming_replica).

For all other cases, including outside Kubernetes, please verify that you already have a user with the REPLICATION privilege, or create a new one by
following the instructions below.

As postgres user on the source system, please run:

createuser -P --replication streaming_replica

Enter the password at the prompt and save it for later, as you will need to add it to a secret in the target instance.

NoteNote

Although the name is not important, we will use streaming_replica for the sake of simplicity. Feel free to change it as you like, provided
you adapt the instructions in the following sections.

Username/Password authentication

The first authentication method supported by EDB Postgres for Kubernetes with the pg_basebackup bootstrap is based on username and password
matching.

Make sure you have the following information before you start the procedure:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 182

https://www.postgresql.org/docs/current/warm-standby.html#STANDBY-PLANNING
https://www.postgresql.org/docs/current/app-pgbasebackup.html
https://www.postgresql.org/docs/current/high-availability.html

location of the source instance, identified by a hostname or an IP address and a TCP port
replication username (streaming_replica for simplicity)
password

You might need to add a line similar to the following to the pg_hba.conf file on the source PostgreSQL instance:

A more restrictive rule for TLS and IP of origin is recommended
host replication streaming_replica all md5

The following manifest creates a new PostgreSQL 17.5 cluster, called target-db , using the pg_basebackup bootstrap method to clone an external
PostgreSQL cluster defined as source-db (in the externalClusters array). As you can see, the source-db definition points to the source-
db.foo.com host and connects as the streaming_replica user, whose password is stored in the password key of the source-db-replica-
user secret.

All the requirements must be met for the clone operation to work, including the same PostgreSQL version (in our case 17.5).

TLS certificate authentication

The second authentication method supported by EDB Postgres for Kubernetes with the pg_basebackup bootstrap is based on TLS client certificates.
This is the recommended approach from a security standpoint.

The following example clones an existing PostgreSQL cluster (cluster-example) in the same Kubernetes cluster.

NoteNote

This example can be easily adapted to cover an instance that resides outside the Kubernetes cluster.

The manifest defines a new PostgreSQL 17.5 cluster called cluster-clone-tls , which is bootstrapped using the pg_basebackup method from the
cluster-example external cluster. The host is identified by the read/write service in the same cluster, while the streaming_replica user is

authenticated thanks to the provided keys, certificate, and certification authority information (respectively in the cluster-example-replication
and cluster-example-ca secrets).

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: target-db
spec::
 instances:: 3
 imageName:: quay.io/enterprisedb/postgresql:17.5

 bootstrap::
 pg_basebackup::
 source:: source-db

 storage::
 size::
1Gi

 externalClusters::
 -- name:: source-db
 connectionParameters::
 host:: source-db.foo.com
 user:: streaming_replica
 password::
 name:: source-db-replica-user
 key::
password

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 183

Configure the application database

We also support to configure the application database for cluster which bootstrap from a live cluster, just like the case of initdb and recovery
bootstrap method. If the new cluster is created as a replica cluster (with replica mode enabled), application database configuration will be skipped.

ImportantImportant

While the Cluster is in recovery mode, no changes to the database, including the catalog, are permitted. This restriction includes any role
overrides, which are deferred until the Cluster transitions to primary. During the recovery phase, roles remain as defined in the source
cluster.

The example below configures the app database with the owner app and the password stored in the provided secret app-secret , following the
bootstrap from a live cluster.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-clone-
tls
spec::
 instances:: 3
 imageName:: quay.io/enterprisedb/postgresql:17.5

 bootstrap::
 pg_basebackup::
 source:: cluster-
example

 storage::
 size::
1Gi

 externalClusters::
 -- name:: cluster-
example
 connectionParameters::
 host:: cluster-example-
rw.default.svc
 user:: streaming_replica
 sslmode:: verify-full
 sslKey::
 name:: cluster-example-
replication
 key:: tls.key
 sslCert::
 name:: cluster-example-
replication
 key:: tls.crt
 sslRootCert::
 name:: cluster-example-
ca
 key::
ca.crt

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 184

With the above configuration, the following will happen only after recovery is completedafter recovery is completed:

1. If the app database does not exist, it will be created.
2. If the app user does not exist, it will be created.
3. If the app user is not the owner of the app database, ownership will be granted to the app user.
4. If the username value matches the owner value in the secret, the password for the application user (the app user in this case) will be updated

to the password value in the secret.

Current limitations

Snapshot copy

The pg_basebackup method takes a snapshot of the source instance in the form of a PostgreSQL base backup. All transactions written from the start of
the backup to the correct termination of the backup will be streamed to the target instance using a second connection (see the --wal-method=stream
option for pg_basebackup).

Once the backup is completed, the new instance will be started on a new timeline and diverge from the source. For this reason, it is advised to stop all write
operations to the source database before migrating to the target database.

Note that this limitation applies only if the target cluster is not defined as a replica cluster.

ImportantImportant

Before you attempt a migration, you must test both the procedure and the applications. In particular, it is fundamental that you run the migration
procedure as many times as needed to systematically measure the downtime of your applications in production.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 bootstrap::
 pg_basebackup::
 database::
app
 owner::
app
 secret::
 name:: app-secret
 source:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 185

14 Importing Postgres databases

This section describes how to import one or more existing PostgreSQL databases inside a brand new EDB Postgres for Kubernetes cluster.

The import operation is based on the concept of online logical backups in PostgreSQL, and relies on pg_dump via a network connection to the origin host,
and pg_restore . Thanks to native Multi-Version Concurrency Control (MVCC) and snapshots, PostgreSQL enables taking consistent backups over the
network, in a concurrent manner, without stopping any write activity.

Logical backups are also the most common, flexible and reliable technique to perform major upgrades of PostgreSQL versions.

As a result, the instructions in this section are suitable for both:

importing one or more databases from an existing PostgreSQL instance, even outside Kubernetes
importing the database from any PostgreSQL version to one that is either the same or newer, enabling major upgrades of PostgreSQL (e.g. from
version 13.x to version 17.x)

WarningWarning

When performing major upgrades of PostgreSQL you are responsible for making sure that applications are compatible with the new version and
that the upgrade path of the objects contained in the database (including extensions) is feasible.

In both cases, the operation is performed on a consistent snapshotsnapshot of the origin database.

ImportantImportant

For this reason we suggest to stop write operations on the source before the final import in the Cluster resource, as changes done to the
source database after the start of the backup will not be in the destination cluster - hence why this feature is referred to as "offline import" or
"offline major upgrade".

How it works

Conceptually, the import requires you to create a new cluster from scratch (destination cluster), using the initdb bootstrap method, and then complete
the initdb.import subsection to import objects from an existing Postgres cluster (source cluster). As per PostgreSQL recommendation, we suggest
that the PostgreSQL major version of the destination cluster is greater or equal than the one of the source cluster.

EDB Postgres for Kubernetes provides two main ways to import objects from the source cluster into the destination cluster:

microservice approachmicroservice approach: the destination cluster is designed to host a single application database owned by the specified application user, as
recommended by the EDB Postgres for Kubernetes project

monolith approachmonolith approach: the destination cluster is designed to host multiple databases and different users, imported from the source cluster

The first import method is available via the microservice type, while the latter by the monolith type.

WarningWarning

It is your responsibility to ensure that the destination cluster can access the source cluster with a superuser or a user having enough privileges to
take a logical backup with pg_dump . Please refer to the PostgreSQL documentation on "SQL Dump" for further information.

The microservice type

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 186

https://www.postgresql.org/docs/current/app-pgdump.html

The microservice type

With the microservice approach, you can specify a single database you want to import from the source cluster into the destination cluster. The operation is
performed in 4 steps:

initdb bootstrap of the new cluster
export of the selected database (in initdb.import.databases) using pg_dump -Fd
import of the database using pg_restore --no-acl --no-owner into the initdb.database (application database) owned by the
initdb.owner user

cleanup of the database dump file
optional execution of the user defined SQL queries in the application database via the postImportApplicationSQL parameter
execution of ANALYZE VERBOSE on the imported database

For example, the YAML below creates a new 3 instance PostgreSQL cluster (latest available major version at the time the operator was released) called
cluster-microservice that imports the angus database from the cluster-pg96 cluster (with the unsupported PostgreSQL 9.6), by

connecting to the postgres database using the postgres user, via the password stored in the cluster-pg96-superuser secret.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 187

WarningWarning

The example above deliberately uses a source database running a version of PostgreSQL that is not supported anymore by the Community, and
consequently by EDB Postgres for Kubernetes. Data export from the source instance is performed using the version of pg_dump in the
destination cluster, which must be a supported one, and equal or greater than the source one. Based on our experience, this way of exporting
data should work on older and unsupported versions of Postgres too, giving you the chance to move your legacy data to a better system, inside
Kubernetes. This is the main reason why we used 9.6 in the examples of this section. We'd be interested to hear from you should you experience
any issues in this area.

There are a few things you need to be aware of when using the microservice type:

It requires an externalCluster that points to an existing PostgreSQL instance containing the data to import (for more information, please refer
to "The externalClusters section")
Traffic must be allowed between the Kubernetes cluster and the externalCluster during the operation
Connection to the source database must be granted with the specified user that needs to run pg_dump and read roles information (superuser is
OK)
Currently, the pg_dump -Fd result is stored temporarily inside the dumps folder in the PGDATA volume, so there should be enough available
space to temporarily contain the dump result on the assigned node, as well as the restored data and indexes. Once the import operation is
completed, this folder is automatically deleted by the operator.
Only one database can be specified inside the initdb.import.databases array
Roles are not imported - and as such they cannot be specified inside initdb.import.roles

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
microservice
spec::
 instances:: 3

 bootstrap::
 initdb::
 import::
 type:: microservice
 databases::
 -- angus
 source::
 externalCluster:: cluster-
pg96

#postImportApplicationSQL:
 #-
|
 # INSERT YOUR SQL QUERIES
HERE
 storage::
 size::
1Gi
 externalClusters::
 -- name:: cluster-
pg96
 connectionParameters::
 # Use the correct IP or host name for the source
database
 host:: pg96.local
 user::
postgres
 dbname::
postgres
 password::
 name:: cluster-pg96-
superuser
 key::
password

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 188

The monolith type

With the monolith approach, you can specify a set of roles and databases you want to import from the source cluster into the destination cluster. The
operation is performed in the following steps:

initdb bootstrap of the new cluster
export and import of the selected roles
export of the selected databases (in initdb.import.databases), one at a time, using pg_dump -Fd
create each of the selected databases and import data using pg_restore
run ANALYZE on each imported database
cleanup of the database dump files

For example, the YAML below creates a new 3 instance PostgreSQL cluster (latest available major version at the time the operator was released) called
cluster-monolith that imports the accountant and the bank_user roles, as well as the accounting , banking , resort databases

from the cluster-pg96 cluster (with the unsupported PostgreSQL 9.6), by connecting to the postgres database using the postgres user, via the
password stored in the cluster-pg96-superuser secret.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 189

There are a few things you need to be aware of when using the monolith type:

It requires an externalCluster that points to an existing PostgreSQL instance containing the data to import (for more information, please refer
to "The externalClusters section")
Traffic must be allowed between the Kubernetes cluster and the externalCluster during the operation
Connection to the source database must be granted with the specified user that needs to run pg_dump and retrieve roles information (superuser is
OK)
Currently, the pg_dump -Fd result is stored temporarily inside the dumps folder in the PGDATA volume, so there should be enough available
space to temporarily contain the dump result on the assigned node, as well as the restored data and indexes. Once the import operation is
completed, this folder is automatically deleted by the operator.
At least one database to be specified in the initdb.import.databases array
Any role that is required by the imported databases must be specified inside initdb.import.roles , with the limitations below:

The following roles, if present, are not imported: postgres , streaming_replica , cnp_pooler_pgbouncer
The SUPERUSER option is removed from any imported role

Wildcard "*" can be used as the only element in the databases and/or roles arrays to import every object of the kind; When matching
databases the wildcard will ignore the postgres database, template databases, and those databases not allowing connections
After the clone procedure is done, ANALYZE VERBOSE is executed for every database.
postImportApplicationSQL field is not supported

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
monolith
spec::
 instances:: 3
 bootstrap::
 initdb::
 import::
 type::
monolith
 databases::
 -- accounting
 -- banking
 --
resort
 roles::
 -- accountant
 -- bank_user
 source::
 externalCluster:: cluster-
pg96
 storage::
 size::
1Gi
 externalClusters::
 -- name:: cluster-
pg96
 connectionParameters::
 # Use the correct IP or host name for the source
database
 host:: pg96.local
 user::
postgres
 dbname::
postgres
 sslmode:: require
 password::
 name:: cluster-pg96-
superuser
 key::
password

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 190

Import optimizations

During the logical import of a database, EDB Postgres for Kubernetes optimizes the configuration of PostgreSQL in order to prioritize speed versus data
durability, by forcing:

archive_mode to off
fsync to off
full_page_writes to off
max_wal_senders to 0
wal_level to minimal

Before completing the import job, EDB Postgres for Kubernetes restores the expected configuration, then runs initdb --sync-only to ensure that
data is permanently written on disk.

ImportantImportant

WAL archiving, if requested, and WAL level will be honored after the database import process has completed. Similarly, replicas will be cloned
after the bootstrap phase, when the actual cluster resource starts.

There are other optimizations you can do during the import phase. Although this topic is beyond the scope of EDB Postgres for Kubernetes, we recommend
that you reduce unnecessary writes in the checkpoint area by tuning Postgres GUCs like shared_buffers , max_wal_size ,
checkpoint_timeout directly in the Cluster configuration.

Customizing pg_dump and pg_restore Behavior

You can customize the behavior of pg_dump and pg_restore by specifying additional options using the pgDumpExtraOptions and
pgRestoreExtraOptions parameters. For instance, you can enable parallel jobs to speed up data import/export processes, as shown in the following

example:

WarningWarning

Use the pgDumpExtraOptions and pgRestoreExtraOptions fields with caution and at your own risk. These options are not validated
or verified by the operator, and some configurations may conflict with its intended functionality or behavior. Always test thoroughly in a safe and
controlled environment before applying them in production.

 #
<snip>
 bootstrap::
 initdb::
 import::
 type:: microservice
 databases::
 --
app
 source::
 externalCluster:: cluster-
example
 pgDumpExtraOptions::
 -- '--jobs=2'
 pgRestoreExtraOptions::
 -- '--jobs=2'
 #
<snip>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 191

Online Import and Upgrades

Logical replication offers a powerful way to import any PostgreSQL database accessible over the network using the following approach:

Import Bootstrap with Schema-Only OptionImport Bootstrap with Schema-Only Option: Initialize the schema in the target database before replication begins.
Subscription Resource Resource: Set up continuous replication to synchronize data changes.

This technique can also be leveraged for performing major PostgreSQL upgrades with minimal downtime, making it ideal for seamless migrations and
system upgrades.

For more details, including limitations and best practices, refer to the Logical Replication section in the documentation.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 192

15 Security

This section contains information about security for EDB Postgres for Kubernetes, that are analyzed at 3 different layers: Code, Container and Cluster.

WarningWarning

The information contained in this page must not exonerate you from performing regular InfoSec duties on your Kubernetes cluster. Please
familiarize yourself with the "Overview of Cloud Native Security" page from the Kubernetes documentation.

About the 4C's Security ModelAbout the 4C's Security Model

Please refer to "The 4C’s Security Model in Kubernetes" blog article to get a better understanding and context of the approach EDB has taken
with security in EDB Postgres for Kubernetes.

Code

EDB Postgres for Kubernetes' source code undergoes systematic static analysis, including checks for security vulnerabilities, using the popular open-
source linter for Go, GolangCI-Lint, directly integrated into the CI/CD pipeline. GolangCI-Lint can run multiple linters on the same source code.

The following tools are used to identify security issues:

Golang Security CheckerGolang Security Checker ((gosec):): A linter that scans the abstract syntax tree of the source code against a set of rules designed to detect known
vulnerabilities, threats, and weaknesses, such as hard-coded credentials, integer overflows, and SQL injections. GolangCI-Lint runs gosec as part
of its suite.

govulncheckgovulncheck:: This tool runs in the CI/CD pipeline and reports known vulnerabilities affecting Go code or the compiler. If the operator is built with a
version of the Go compiler containing a known vulnerability, govulncheck will detect it.

CodeQLCodeQL:: Provided by GitHub, this tool scans for security issues and blocks any pull request with detected vulnerabilities. CodeQL is configured to
review only Go code, excluding other languages in the repository such as Python or Bash.

SnykSnyk:: Conducts nightly code scans in a scheduled job and generates weekly reports highlighting any new findings related to code security and
licensing issues.

The EDB Postgres for Kubernetes repository has the "Private vulnerability reporting" option enabled in the Security section. This feature allows users to
safely report security issues that require careful handling before being publicly disclosed. If you discover any security bug, please use this medium to
report it.

ImportantImportant

A failure in the static code analysis phase of the CI/CD pipeline will block the entire delivery process of EDB Postgres for Kubernetes. Every
commit must pass all the linters defined by GolangCI-Lint.

Container

Every container image in EDB Postgres for Kubernetes is automatically built via CI/CD pipelines following every commit. These images include not only the
operator's image but also the operands' images, specifically for every supported PostgreSQL version (including EDB Postgres Extended and EDB Postgres
Advanced). During the CI/CD process, images undergo scanning with the following tools:

DockleDockle:: Ensures best practices in the container build process.
SnykSnyk:: Detects security issues within the container and reports findings via the GitHub interface.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 193

https://kubernetes.io/docs/concepts/security/overview/
https://www.enterprisedb.com/blog/4cs-security-model-kubernetes
https://github.com/golangci/golangci-lint
https://github.com/securego/gosec
https://pkg.go.dev/golang.org/x/vuln/cmd/govulncheck
https://codeql.github.com/
https://snyk.io/
https://github.com/EnterpriseDB/cloud-native-postgres/security
https://www.enterprisedb.com/docs/pge/latest/
https://www.enterprisedb.com/docs/epas/latest/
https://github.com/goodwithtech/dockle
https://snyk.io/

ImportantImportant

All operand images are automatically rebuilt daily by our pipelines to incorporate security updates at the base image and package level, providing
patch-level updatespatch-level updates for the container images distributed to EDB download sites.

WarningWarning

Running outdated images can expose your environment to security risks and performance issues. We highly recommend that you update to the
latest image version and keep your images up to date. This will ensure that you take advantage of the latest updates and patches available.

Guidelines and Frameworks for Container Security

The following guidelines and frameworks have been considered for ensuring container-level security:

"Container Image Creation and Deployment Guide""Container Image Creation and Deployment Guide":: Developed by the Defense Information Systems Agency (DISA) of the United States Department
of Defense (DoD).
"CIS Benchmark for Docker""CIS Benchmark for Docker":: Developed by the Center for Internet Security (CIS).

About Container-Level SecurityAbout Container-Level Security

For more information on the approach that EDB has taken regarding security at the container level in EDB Postgres for Kubernetes, please refer to
the blog article "Security and Containers in EDB Postgres for Kubernetes".

Cluster

Security at the cluster level takes into account all Kubernetes components that form both the control plane and the nodes, as well as the applications that
run in the cluster (PostgreSQL included).

Role Based Access Control (RBAC)

The operator interacts with the Kubernetes API server using a dedicated service account named postgresql-operator-manager . This service
account is typically installed in the operator namespace, commonly postgresql-operator-system . However, the namespace may vary based on the
deployment method (see the subsection below).

In the same namespace, there is a binding between the postgresql-operator-manager service account and a role. The specific name and type of
this role (either Role or ClusterRole) also depend on the deployment method. This role defines the necessary permissions required by the operator
to function correctly. To learn more about these roles, you can use the kubectl describe clusterrole or kubectl describe role
commands, depending on the deployment method. For OpenShift specificities on this matter, please consult the "Red Hat OpenShift" section, in particular
"Pre-defined RBAC objects" section.

ImportantImportant

The above permissions are exclusively reserved for the operator's service account to interact with the Kubernetes API server. They are not directly
accessible by the users of the operator that interact only with Cluster , Pooler , Backup , ScheduledBackup , ImageCatalog and
ClusterImageCatalog resources.

Below we provide some examples and, most importantly, the reasons why EDB Postgres for Kubernetes requires full or partial management of standard
Kubernetes namespaced or non-namespaced resources.

configmaps : The operator needs to create and manage default config maps for the Prometheus exporter monitoring metrics.

deployments : The operator needs to manage a PgBouncer connection pooler using a standard Kubernetes Deployment resource.

jobs : The operator needs to handle jobs to manage different Cluster 's phases.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 194

https://dl.dod.cyber.mil/wp-content/uploads/devsecops/pdf/DevSecOps_Enterprise_Container_Image_Creation_and_Deployment_Guide_2.6-Public-Release.pdf
https://www.cisecurity.org/benchmark/docker/
https://www.enterprisedb.com/blog/security-and-containers-cloud-native-postgresql

persistentvolumeclaims : The volume where the PGDATA resides is the central element of a PostgreSQL Cluster resource; the operator needs
to interact with the selected storage class to dynamically provision the requested volumes, based on the defined scheduling policies.

pods : The operator needs to manage Cluster 's instances.

secrets : Unless you provide certificates and passwords to your Cluster objects, the operator adopts the "convention over configuration" paradigm
by self-provisioning random generated passwords and TLS certificates, and by storing them in secrets.

serviceaccounts : The operator needs to create a service account that enables the instance manager (which is the PID 1 process of the container that
controls the PostgreSQL server) to safely communicate with the Kubernetes API server to coordinate actions and continuously provide a reliable status of
the Cluster .

services : The operator needs to control network access to the PostgreSQL cluster (or the connection pooler) from applications, and properly manage
failover/switchover operations in an automated way (by assigning, for example, the correct end-point of a service to the proper primary PostgreSQL
instance).

validatingwebhookconfigurations and mutatingwebhookconfigurations : The operator injects its self-signed webhook CA into both
webhook configurations, which are needed to validate and mutate all the resources it manages. For more details, please see the Kubernetes
documentation.

volumesnapshots : The operator needs to generate VolumeSnapshots objects in order to take backups of a PostgreSQL server. VolumeSnapshots
are read too in order to validate them before starting the restore process.

nodes : The operator needs to get the labels for Affinity and AntiAffinity so it can decide in which nodes a pod can be scheduled. This is useful, for
example, to prevent the replicas from being scheduled in the same node - especially important if nodes are in different availability zones. This permission is
also used to determine whether a node is scheduled, preventing the creation of pods on unscheduled nodes, or triggering a switchover if the primary lives in
an unscheduled node.

Deployments and ClusterRole Resources

As mentioned above, each deployment method may have variations in the namespace location of the service account, as well as the names and types of role
bindings and respective roles.

Via Kubernetes Manifest

When installing EDB Postgres for Kubernetes using the Kubernetes manifest, permissions are set to ClusterRoleBinding by default. You can inspect
the permissions required by the operator by running:

Via OLM

From a security perspective, the Operator Lifecycle Manager (OLM) provides a more flexible deployment method. It allows you to configure the operator to
watch either all namespaces or specific namespaces, enabling more granular permission management.

InfoInfo

OLM allows you to deploy the operator in its own namespace and configure it to watch specific namespaces used for EDB Postgres for Kubernetes
clusters. This setup helps to contain permissions and restrict access more effectively.

kubectl describe clusterrole postgresql-operator-
manager

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 195

https://kubernetes.io/docs/reference/access-authn-authz/extensible-admission-controllers/

Why Are ClusterRole Permissions Needed?

The operator currently requires ClusterRole permissions to read nodes and ClusterImageCatalog objects. All other permissions can be
namespace-scoped (i.e., Role) or cluster-wide (i.e., ClusterRole).

Even with these permissions, if someone gains access to the ServiceAccount , they will only have get , list , and watch permissions, which are
limited to viewing resources. However, if an unauthorized user gains access to the ServiceAccount , it indicates a more significant security issue.

Therefore, it's crucial to prevent users from accessing the operator's ServiceAccount and any other ServiceAccount with elevated permissions.

Calls to the API server made by the instance manager

The instance manager, which is the entry point of the operand container, needs to make some calls to the Kubernetes API server to ensure that the status of
some resources is correctly updated and to access the config maps and secrets that are associated with that Postgres cluster. Such calls are performed
through a dedicated ServiceAccount created by the operator that shares the same PostgreSQL Cluster resource name. !!!

ImportantImportant

The operand can only access a specific and limited subset of resources through the API server. A service account is the recommended way to
access the API server from within a Pod.

For transparency, the permissions associated with the service account are defined in the roles.go file. For example, to retrieve the permissions of a generic
mypg cluster in the myns namespace, you can type the following command:

Then verify that the role is bound to the service account:

ImportantImportant

Remember that roles are limited to a given namespaceroles are limited to a given namespace.

Below we provide a quick summary of the permissions associated with the service account for generic Kubernetes resources.

configmaps : The instance manager can only read config maps that are related to the same cluster, such as custom monitoring queries

secrets : The instance manager can only read secrets that are related to the same cluster, namely: streaming replication user, application user, super
user, LDAP authentication user, client CA, server CA, server certificate, backup credentials, custom monitoring queries

events : The instance manager can create an event for the cluster, informing the API server about a particular aspect of the PostgreSQL instance
lifecycle

Here instead, we provide the same summary for resources specific to EDB Postgres for Kubernetes.

clusters : The instance manager requires read-only permissions, namely get , list and watch , just for its own Cluster resource

clusters/status : The instance manager requires to update and patch the status of just its own Cluster resource

backups : The instance manager requires get and list permissions to read any Backup resource in the namespace. Additionally, it requires the
delete permission to clean up the Kubernetes cluster by removing the Backup objects that do not have a counterpart in the object store - typically

because of retention policies

kubectl get role -n myns mypg -o
yaml

kubectl get rolebinding -n myns mypg -o
yaml

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 196

https://kubernetes.io/docs/tasks/run-application/access-api-from-pod/
https://github.com/cloudnative-pg/cloudnative-pg/blob/main/pkg/specs/roles.go

backups/status : The instance manager requires to update and patch the status of any Backup resource in the namespace

Pod Security Policies

ImportantImportant

Starting from Kubernetes v1.21, the use of PodSecurityPolicy has been deprecated, and as of Kubernetes v1.25, it has been completely
removed. Despite this deprecation, we acknowledge that the operator is currently undergoing testing in older and unsupported versions of
Kubernetes. Therefore, this section is retained for those specific scenarios.

A Pod Security Policy is the Kubernetes way to define security rules and specifications that a pod needs to meet to run in a cluster. For InfoSec reasons,
every Kubernetes platform should implement them.

EDB Postgres for Kubernetes does not require privileged mode for containers execution. The PostgreSQL containers run as postgres system user. No
component whatsoever requires running as root .

Likewise, Volumes access does not require privileges mode or root privileges either. Proper permissions must be properly assigned by the Kubernetes
platform and/or administrators. The PostgreSQL containers run with a read-only root filesystem (i.e. no writable layer).

The operator explicitly sets the required security contexts.

On Red Hat OpenShift, Cloud Native PostgreSQL runs in restricted security context constraint, the most restrictive one. The goal is to limit the
execution of a pod to a namespace allocated UID and SELinux context.

Security Context Constraints in OpenShiftSecurity Context Constraints in OpenShift

For further information on Security Context Constraints (SCC) in OpenShift, please refer to the "Managing SCC in OpenShift" article.

Security Context Constraints and namespacesSecurity Context Constraints and namespaces

As stated by Openshift documentation SCCs are not applied in the default namespaces (default , kube-system , kube-public ,
openshift-node , openshift-infra , openshift) and those should not be used to run pods. CNP clusters deployed in those

namespaces will be unable to start due to missing SCCs.

Restricting Pod access using AppArmor

You can assign an AppArmor profile to the postgres , initdb , join , full-recovery and bootstrap-controller containers inside every
Cluster pod through the container.apparmor.security.beta.kubernetes.io annotation.

Example of cluster annotationsExample of cluster annotations

 kind: Cluster
 metadata:
 name: cluster-apparmor
 annotations:
 container.apparmor.security.beta.kubernetes.io/postgres: runtime/default
 container.apparmor.security.beta.kubernetes.io/initdb: runtime/default
 container.apparmor.security.beta.kubernetes.io/join: runtime/default

WarningWarning

Using this kind of annotations can result in your cluster to stop working. If this is the case, the annotation can be safely removed from the
Cluster .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 197

https://kubernetes.io/docs/concepts/policy/pod-security-policy/
https://www.openshift.com/blog/managing-sccs-in-openshift
https://docs.openshift.com/container-platform/latest/authentication/managing-security-context-constraints.html#role-based-access-to-ssc_configuring-internal-oauth
https://kubernetes.io/docs/tutorials/security/apparmor/

The AppArmor configuration must be at Kubernetes node level, meaning that the underlying operating system must have this option enable and properly
configured.

In case this is not the situation, and the annotations were added at the Cluster creation time, pods will not be created. On the other hand, if you add the
annotations after the Cluster was created the pods in the cluster will be unable to start and you will get an error like this:

metadata.annotations[container.apparmor.security.beta.kubernetes.io/postgres]: Forbidden: may not add
AppArmor annotations]

In such cases, please refer to your Kubernetes administrators and ask for the proper AppArmor profile to use.

AppArmor and OpenShiftAppArmor and OpenShift

AppArmor is currently available only on Debian distributions like Ubuntu, hence this is not (and will not be) available in OpenShift

Network Policies

The pods created by the Cluster resource can be controlled by Kubernetes network policies to enable/disable inbound and outbound network access at
IP and TCP level. You can find more information in the networking document.

ImportantImportant

The operator needs to communicate to each instance on TCP port 8000 to get information about the status of the PostgreSQL server. Please make
sure you keep this in mind in case you add any network policy, and refer to the "Exposed Ports" section below for a list of ports used by EDB
Postgres for Kubernetes for finer control.

Network policies are beyond the scope of this document. Please refer to the "Network policies" section of the Kubernetes documentation for further
information.

Exposed Ports

EDB Postgres for Kubernetes exposes ports at operator, instance manager and operand levels, as listed in the table below:

System Port number Exposing Name TLS Authentication

operator 9443 webhook server webhook-server Yes Yes

operator 8080 metrics metrics No No

instance manager 9187 metrics metrics Optional No

instance manager 8000 status status Yes No

operand 5432 PostgreSQL instance postgresql Optional Yes

PostgreSQL

The current implementation of EDB Postgres for Kubernetes automatically creates passwords and .pgpass files for the database owner and, only if
requested by setting enableSuperuserAccess to true , for the postgres superuser.

WarningWarning

enableSuperuserAccess is set to false by default to improve the security-by-default posture of the operator, fostering a microservice
approach where changes to PostgreSQL are performed in a declarative way through the spec of the Cluster resource, while providing
developers with full powers inside the database through the database owner user.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 198

https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/

As far as password encryption is concerned, EDB Postgres for Kubernetes follows the default behavior of PostgreSQL: starting from PostgreSQL 14,
password_encryption is by default set to scram-sha-256 , while on earlier versions it is set to md5 .

ImportantImportant

Please refer to the "Password authentication" section in the PostgreSQL documentation for details.

NoteNote

The operator supports toggling the enableSuperuserAccess option. When you disable it on a running cluster, the operator will ignore the
content of the secret, remove it (if previously generated by the operator) and set the password of the postgres user to NULL (de facto
disabling remote access through password authentication).

See the "Secrets" section in the "Connecting from an application" page for more information.

You can use those files to configure application access to the database.

By default, every replica is automatically configured to connect in physical async streaming replicationphysical async streaming replication with the current primary instance, with a special
user called streaming_replica . The connection between nodes is encryptedencrypted and authentication is via TLS client certificatesTLS client certificates (please refer to the
["Client TLS/SSL Connections"](ssl_connections.md#"Client TLS/SSL Connections") page for details). By default, the operator requires TLS v1.3
connections.

Currently, the operator allows administrators to add pg_hba.conf lines directly in the manifest as part of the pg_hba section of the postgresql
configuration. The lines defined in the manifest are added to a default pg_hba.conf .

For further detail on how pg_hba.conf is managed by the operator, see the "PostgreSQL Configuration" page of the documentation.

The administrator can also customize the content of the pg_ident.conf file that by default only maps the local postgres user to the postgres user in
the database.

For further detail on how pg_ident.conf is managed by the operator, see the "PostgreSQL Configuration" page of the documentation.

ImportantImportant

Examples assume that the Kubernetes cluster runs in a private and secure network.

Storage

EDB Postgres for Kubernetes delegates encryption at rest to the underlying storage class. For data protection in production environments, we highly
recommend that you choose a storage class that supports encryption at rest.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 199

https://www.postgresql.org/docs/current/auth-password.html

16 Postgres instance manager

EDB Postgres for Kubernetes does not rely on an external tool for failover management. It simply relies on the Kubernetes API server and a native key
component called: the Postgres instance managerPostgres instance manager.

The instance manager takes care of the entire lifecycle of the PostgreSQL server process (also known as postmaster).

When you create a new cluster, the operator makes a Pod per instance. The field .spec.instances specifies how many instances to create.

Each Pod will start the instance manager as the parent process (PID 1) for the main container, which in turn runs the PostgreSQL instance. During the
lifetime of the Pod, the instance manager acts as a backend to handle the startup, liveness and readiness probes.

Startup Probe

The startup probe ensures that a PostgreSQL instance, whether a primary or standby, has fully started.

InfoInfo

By default, the startup probe uses pg_isready . However, the behavior can be customized by specifying a different startup strategy.

While the startup probe is running, the liveness and readiness probes remain disabled. Following Kubernetes standards, if the startup probe fails, the
kubelet will terminate the container, which will then be restarted.

The .spec.startDelay parameter specifies the maximum time, in seconds, allowed for the startup probe to succeed.

By default, the startDelay is set to 3600 seconds. It is recommended to adjust this setting based on the time PostgreSQL needs to fully initialize in
your specific environment.

WarningWarning

Setting .spec.startDelay too low can cause the liveness probe to activate prematurely, potentially resulting in unnecessary Pod restarts if
PostgreSQL hasn’t fully initialized.

EDB Postgres for Kubernetes configures the startup probe with the following default parameters:

The failureThreshold value is automatically calculated by dividing startDelay by periodSeconds .

You can customize any of the probe settings in the .spec.probes.startup section of your configuration.

WarningWarning

Be sure that any custom probe settings are tailored to your cluster's operational requirements to avoid unintended disruptions.

InfoInfo

For more details on probe configuration, refer to the probe API documentation.

If you manually specify .spec.probes.startup.failureThreshold , it will override the default behavior and disable the automatic use of

failureThreshold:: FAILURE_THRESHOLD
periodSeconds:: 10
successThreshold:: 1
timeoutSeconds:: 5

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 200

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#container-probes
https://www.postgresql.org/docs/current/app-pg-isready.html

If you manually specify .spec.probes.startup.failureThreshold , it will override the default behavior and disable the automatic use of
startDelay .

For example, the following configuration explicitly sets custom probe parameters, bypassing startDelay :

Startup Probe Strategy

In certain scenarios, you may need to customize the startup strategy for your PostgreSQL cluster. For example, you might delay marking a replica as started
until it begins streaming from the primary or define a replication lag threshold that must be met before considering the replica ready.

To accommodate these requirements, EDB Postgres for Kubernetes extends the .spec.probes.startup stanza with two optional parameters:

type : specifies the criteria for considering the probe successful. Accepted values, in increasing order of complexity/depth, include:

pg_isready : marks the probe as successful when the pg_isready command exits with 0 . This is the default for primary instances and
replicas.
query : marks the probe as successful when a basic query is executed on the postgres database locally.
streaming : marks the probe as successful when the replica begins streaming from its source and meets the specified lag requirements

(details below).

maximumLag : defines the maximum acceptable replication lag, measured in bytes (expressed as Kubernetes quantities). This parameter is only
applicable when type is set to streaming . If maximumLag is not specified, the replica is considered successfully started as soon as it begins
streaming.

ImportantImportant

The .spec.probes.startup.maximumLag option is validated and enforced only during the startup phase of the pod, meaning it applies
exclusively when the replica is starting.

WarningWarning

Incorrect configuration of the maximumLag option can cause continuous failures of the startup probe, leading to repeated replica restarts.
Ensure you understand how this option works and configure appropriate values for failureThreshold and periodSeconds to give the
replica enough time to catch up with its source.

The following example requires a replica to have a maximum lag of 16Mi from the source to be considered started:

...
snip
spec::
 probes::
 startup::
 periodSeconds:: 3
 timeoutSeconds:: 3
 failureThreshold:: 10

<snip>
probes::
 startup::
 type:: streaming
 maximumLag:: 16Mi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 201

Liveness Probe

The liveness probe begins after the startup probe successfully completes. Its primary role is to ensure the PostgreSQL instance manager is operating
correctly.

Following Kubernetes standards, if the liveness probe fails, the kubelet will terminate the container, which will then be restarted.

The amount of time before a Pod is classified as not alive is configurable via the .spec.livenessProbeTimeout parameter.

EDB Postgres for Kubernetes configures the liveness probe with the following default parameters:

The failureThreshold value is automatically calculated by dividing livenessProbeTimeout by periodSeconds .

By default, .spec.livenessProbeTimeout is set to 30 seconds. This means the liveness probe will report a failure if it detects three consecutive
probe failures, with a 10-second interval between each check.

You can customize any of the probe settings in the .spec.probes.liveness section of your configuration.

WarningWarning

Be sure that any custom probe settings are tailored to your cluster's operational requirements to avoid unintended disruptions.

InfoInfo

For more details on probe configuration, refer to the probe API documentation.

If you manually specify .spec.probes.liveness.failureThreshold , it will override the default behavior and disable the automatic use of
livenessProbeTimeout .

For example, the following configuration explicitly sets custom probe parameters, bypassing livenessProbeTimeout :

Primary Isolation (alpha)

EDB Postgres for Kubernetes 1.26 introduces an opt-in experimental behavior for the liveness probe of a PostgreSQL primary, which will report a failure if
bothboth of the following conditions are met:

1. The instance manager cannot reach the Kubernetes API server
2. The instance manager cannot reach anyany other instance via the instance manager’s REST API

The effect of this behavior is to consider an isolated primary to be not alive and subsequently shut it downshut it down when the liveness probe fails.

It is disabled by defaultdisabled by default and can be enabled by adding the following annotation to the Cluster resource:

failureThreshold:: FAILURE_THRESHOLD
periodSeconds:: 10
successThreshold:: 1
timeoutSeconds:: 5

...
snip
spec::
 probes::
 liveness::
 periodSeconds:: 3
 timeoutSeconds:: 3
 failureThreshold:: 10

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 202

WarningWarning

This feature is experimental and will be introduced in a future EDB Postgres for Kubernetes release with a new API. If you decide to use it now,
note that the API will changewill change.

ImportantImportant

If you plan to enable this experimental feature, be aware that the default liveness probe settings—automatically derived from
livenessProbeTimeout —might be aggressive (30 seconds). As such, we recommend explicitly setting the liveness probe configuration to

suit your environment.

The annotation also accepts two optional network settings: requestTimeout and connectionTimeout , both defaulting to 500 (in milliseconds).
In cloud environments, you may need to increase these values. For example:

Readiness Probe

The readiness probe starts once the startup probe has successfully completed. Its primary purpose is to check whether the PostgreSQL instance is ready to
accept traffic and serve requests at any point during the pod's lifecycle.

InfoInfo

By default, the readiness probe uses pg_isready . However, the behavior can be customized by specifying a different readiness strategy.

Following Kubernetes standards, if the readiness probe fails, the pod will be marked unready and will not receive traffic from any services. An unready pod
is also ineligible for promotion during automated failover scenarios.

EDB Postgres for Kubernetes uses the following default configuration for the readiness probe:

If the default settings do not suit your requirements, you can fully customize the readiness probe by specifying parameters in the
.spec.probes.readiness stanza. For example:

metadata::
 annotations::
 alpha.k8s.enterprisedb.io/livenessPinger:: '{"enabled":
true}'

metadata::
 annotations::
 alpha.k8s.enterprisedb.io/livenessPinger:: '{"enabled":
true,"requestTimeout":1000,"connectionTimeout":1000}'

failureThreshold:: 3
periodSeconds:: 10
successThreshold:: 1
timeoutSeconds:: 5

...
snip
spec::
 probes::
 readiness::
 periodSeconds:: 3
 timeoutSeconds:: 3
 failureThreshold:: 10

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 203

https://www.postgresql.org/docs/current/app-pg-isready.html

WarningWarning

Ensure that any custom probe settings are aligned with your cluster’s operational requirements to prevent unintended disruptions.

InfoInfo

For more information on configuring probes, see the probe API.

Readiness Probe Strategy

In certain scenarios, you may need to customize the readiness strategy for your cluster. For example, you might delay marking a replica as ready until it
begins streaming from the primary or define a maximum replication lag threshold before considering the replica ready.

To accommodate these requirements, EDB Postgres for Kubernetes extends the .spec.probes.readiness stanza with two optional parameters:
type and maximumLag . Please refer to the Startup Probe Strategy section for detailed information on these options.

ImportantImportant

Unlike the startup probe, the .spec.probes.readiness.maximumLag option is continuously monitored. A lagging replica may become
unready if this setting is not appropriately tuned.

WarningWarning

Incorrect configuration of the `maximumLag` option can lead to repeated
readiness probe failures, causing serious consequences, such as:

- Exclusion of the replica from key operator features, such as promotion
 during failover or participation in synchronous replication quorum.
- Disruptions in read/read-only services.
- In longer failover times scenarios, replicas might be declared unready,
 leading to a cluster stall requiring manual intervention.

Use the `streaming` and `maximumLag` options with extreme caution. If
you're unfamiliar with PostgreSQL replication, rely on the default
strategy. Seek professional advice if unsure.

The following example requires a replica to have a maximum lag of 64Mi from the source to be considered ready. It also provides approximately 300
seconds (30 failures × 10 seconds) for the startup probe to succeed:

<snip>
probes::
 readiness::
 type:: streaming
 maximumLag:: 64Mi
 failureThreshold:: 30
 periodSeconds:: 10

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 204

Shutdown control

When a Pod running Postgres is deleted, either manually or by Kubernetes following a node drain operation, the kubelet will send a termination signal to
the instance manager, and the instance manager will take care of shutting down PostgreSQL in an appropriate way. The
.spec.smartShutdownTimeout and .spec.stopDelay options, expressed in seconds, control the amount of time given to PostgreSQL to shut

down. The values default to 180 and 1800 seconds, respectively.

The shutdown procedure is composed of two steps:

1. The instance manager requests a smartsmart shut down, disallowing any new connection to PostgreSQL. This step will last for up to
.spec.smartShutdownTimeout seconds.

2. If PostgreSQL is still up, the instance manager requests a fastfast shut down, terminating any existing connection and exiting promptly. If the instance is
archiving and/or streaming WAL files, the process will wait for up to the remaining time set in .spec.stopDelay to complete the operation and
then forcibly shut down. Such a timeout needs to be at least 15 seconds.

ImportantImportant

In order to avoid any data loss in the Postgres cluster, which impacts the database RPO, don't delete the Pod where the primary instance is
running. In this case, perform a switchover to another instance first.

Shutdown of the primary during a switchover

During a switchover, the shutdown procedure is slightly different from the general case. Indeed, the operator requires the former primary to issue a fastfast
shut down before the selected new primary can be promoted, in order to ensure that all the data are available on the new primary.

For this reason, the .spec.switchoverDelay , expressed in seconds, controls the time given to the former primary to shut down gracefully and
archive all the WAL files. By default it is set to 3600 (1 hour).

WarningWarning

The .spec.switchoverDelay option affects the RPO and RTO of your PostgreSQL database. Setting it to a low value, might favor RTO over
RPO but lead to data loss at cluster level and/or backup level. On the contrary, setting it to a high value, might remove the risk of data loss while
leaving the cluster without an active primary for a longer time during the switchover.

Failover

In case of primary pod failure, the cluster will go into failover mode. Please refer to the "Failover" section for details.

Disk Full Failure

Storage exhaustion is a well known issue for PostgreSQL clusters. The PostgreSQL documentation highlights the possible failure scenarios and the
importance of monitoring disk usage to prevent it from becoming full.

The same applies to EDB Postgres for Kubernetes and Kubernetes as well: the "Monitoring" section provides details on checking the disk space used by WAL
segments and standard metrics on disk usage exported to Prometheus.

ImportantImportant

In a production system, it is critical to monitor the database continuously. Exhausted disk storage can lead to a database server shutdown.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 205

https://www.postgresql.org/docs/current/diskusage.html#DISK-FULL

NoteNote

The detection of exhausted storage relies on a storage class that accurately reports disk size and usage. This may not be the case in simulated
Kubernetes environments like Kind or with test storage class implementations such as csi-driver-host-path .

If the disk containing the WALs becomes full and no more WAL segments can be stored, PostgreSQL will stop working. EDB Postgres for Kubernetes
correctly detects this issue by verifying that there is enough space to store the next WAL segment, and avoids triggering a failover, which could complicate
recovery.

That allows a human administrator to address the root cause.

In such a case, if supported by the storage class, the quickest course of action is currently to:

1. Expand the storage size of the full PVC
2. Increase the size in the Cluster resource to the same value

Once the issue is resolved and there is sufficient free space for WAL segments, the Pod will restart and the cluster will become healthy.

See also the "Volume expansion" section of the documentation.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 206

17 Scheduling

Scheduling, in Kubernetes, is the process responsible for placing a new pod on the best node possible, based on several criteria.

Kubernetes documentationKubernetes documentation

Please refer to the Kubernetes documentation for more information on scheduling, including all the available policies. On this page we assume
you are familiar with concepts like affinity, anti-affinity, node selectors, and so on.

You can control how the EDB Postgres for Kubernetes cluster's instances should be scheduled through the affinity section in the definition of the
cluster, which supports:

pod affinity/anti-affinity
node selectors
tolerations

Pod Affinity and Anti-Affinity

Kubernetes provides mechanisms to control where pods are scheduled using affinity and anti-affinity rules. These rules allow you to specify whether a pod
should be scheduled on particular nodes (affinity) or avoided on specific nodes (anti-affinity) based on the workloads already running there. This capability
is technically referred to as inter-pod affinity/anti-affinityinter-pod affinity/anti-affinity.

By default, EDB Postgres for Kubernetes configures cluster instances to preferably be scheduled on different nodes, while pgBouncer instances might
still run on the same nodes.

For example, given the following Cluster specification:

The affinity configuration applied in the instance pods will be:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 imageName:: quay.io/enterprisedb/postgresql:17.5

 affinity::
 enablePodAntiAffinity:: true # Default
value
 topologyKey:: kubernetes.io/hostname # Default
value
 podAntiAffinityType:: preferred # Default
value

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 207

https://kubernetes.io/docs/concepts/scheduling-eviction/

With this setup, Kubernetes will prefer to schedule a 3-node PostgreSQL cluster across three different nodes, assuming sufficient resources are available.

Requiring Pod Anti-Affinity

You can modify the default behavior by adjusting the settings mentioned above.

For example, setting podAntiAffinityType to required will enforce requiredDuringSchedulingIgnoredDuringExecution instead
of preferredDuringSchedulingIgnoredDuringExecution .

However, be aware that this strict requirement may cause pods to remain pending if resources are insufficient—this is particularly relevant when using
Cluster Autoscaler for automated horizontal scaling in a Kubernetes cluster.

Inter-pod Affinity and Anti-AffinityInter-pod Affinity and Anti-Affinity

For more details, refer to the Kubernetes documentation.

Topology Considerations

In cloud environments, you might consider using topology.kubernetes.io/zone as the topologyKey to ensure pods are distributed across
different availability zones rather than just nodes. For more options, see Well-Known Labels, Annotations, and Taints.

Disabling Anti-Affinity Policies

If needed, you can disable the operator-generated anti-affinity policies by setting enablePodAntiAffinity to false .

Fine-Grained Control with Custom Rules

For scenarios requiring more precise control, you can specify custom pod affinity or anti-affinity rules using the additionalPodAffinity and
additionalPodAntiAffinity configuration attributes. These custom rules will be added to those generated by the operator, if enabled, or used

directly if the operator-generated rules are disabled.

affinity::
 podAntiAffinity::
 preferredDuringSchedulingIgnoredDuringExecution::
 -- podAffinityTerm::
 labelSelector::
 matchExpressions::
 -- key:: k8s.enterprisedb.io/cluster
 operator:: In
 values::
 -- cluster-
example
 -- key:: k8s.enterprisedb.io/podRole
 operator:: In
 values::
 --
instance
 topologyKey:: kubernetes.io/hostname
 weight:: 100

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 208

https://github.com/kubernetes/autoscaler/tree/master/cluster-autoscaler
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-and-anti-affinity
https://kubernetes.io/docs/reference/labels-annotations-taints/

NoteNote

When using additionalPodAntiAffinity or additionalPodAffinity , you must provide the full podAntiAffinity or
podAffinity structure expected by the Pod specification. The following YAML example demonstrates how to configure only one instance of

PostgreSQL per worker node, regardless of which PostgreSQL cluster it belongs to:

Node selection through nodeSelector

Kubernetes allows nodeSelector to provide a list of labels (defined as key-value pairs) to select the nodes on which a pod can run. Specifically, the
node must have each indicated key-value pair as labels for the pod to be scheduled and run.

Similarly, EDB Postgres for Kubernetes consents you to define a nodeSelector in the affinity section, so that you can request a PostgreSQL
cluster to run only on nodes that have those labels.

Tolerations

Kubernetes allows you to specify (through taints) whether a node should repel all pods not explicitly tolerating (through tolerations) their
taints .

So, by setting a proper set of tolerations for a workload matching a specific node's taints , Kubernetes scheduler will now take into consideration
the tainted node, while deciding on which node to schedule the workload. Tolerations can be configured for all the pods of a Cluster through the
.spec.affinity.tolerations section, which accepts the usual Kubernetes syntax for tolerations.

Taints and TolerationsTaints and Tolerations

More information on taints and tolerations can be found in the Kubernetes documentation.

Isolating PostgreSQL workloads

ImportantImportant

Before proceeding, please ensure you have read the "Architecture" section of the documentation.

While you can deploy PostgreSQL on Kubernetes in various ways, we recommend following these essential principles for production environments:

Exploit Availability Zones:Exploit Availability Zones: If possible, take advantage of availability zones (AZs) within the same Kubernetes cluster by distributing PostgreSQL
instances across different AZs.
Dedicate Worker Nodes:Dedicate Worker Nodes: Allocate specific worker nodes for PostgreSQL workloads through the node-role.kubernetes.io/postgres label
and taint, as detailed in the Reserving Nodes for PostgreSQL Workloads section.
Avoid Node Overlap:Avoid Node Overlap: Ensure that no instances from the same PostgreSQL cluster are running on the same node.

 additionalPodAntiAffinity::
 requiredDuringSchedulingIgnoredDuringExecution::
 -- labelSelector::
 matchExpressions::
 -- key:: postgresql
 operator::
Exists
 values:: [][]
 topologyKey:: "kubernetes.io/hostname"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 209

https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-toleration/

As explained in greater detail in the previous sections, EDB Postgres for Kubernetes provides the flexibility to configure pod anti-affinity, node selectors,
and tolerations.

Below is a sample configuration to ensure that a PostgreSQL Cluster is deployed on postgres nodes, with its instances distributed across different
nodes:

Despite its simplicity, this setup ensures optimal distribution and isolation of PostgreSQL workloads, leading to enhanced performance and reliability in
your production environment.

 #
<snip>
 affinity::
 enablePodAntiAffinity:: true
 topologyKey:: kubernetes.io/hostname
 podAntiAffinityType::
required
 nodeSelector::
 node-role.kubernetes.io/postgres:: ""
 tolerations::
 -- key:: node-role.kubernetes.io/postgres
 operator::
Exists
 effect:: NoSchedule
 #
<snip>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 210

18 Resource management

In a typical Kubernetes cluster, pods run with unlimited resources. By default, they might be allowed to use as much CPU and RAM as needed.

EDB Postgres for Kubernetes allows administrators to control and manage resource usage by the pods of the cluster, through the resources section of
the manifest, with two knobs:

requests : initial requirement
limits : maximum usage, in case of dynamic increase of resource needs

For example, you can request an initial amount of RAM of 32MiB (scalable to 128MiB) and 50m of CPU (scalable to 100m) as follows:

Memory requests and limits are associated with containers, but it is useful to think of a pod as having a memory request and limit. The pod's memory
request is the sum of the memory requests for all the containers in the pod.

Pod scheduling is based on requests and not on limits. A pod is scheduled to run on a Node only if the Node has enough available memory to satisfy the
pod's memory request.

For each resource, we divide containers into 3 Quality of Service (QoS) classes, in decreasing order of priority:

Guaranteed
Burstable
Best-Effort

For more details, please refer to the "Configure Quality of Service for Pods" section in the Kubernetes documentation.

For a PostgreSQL workload it is recommended to set a "Guaranteed" QoS.

To avoid resources related issues in Kubernetes, we can refer to the best practices for "out of resource" handling while creating a cluster:

Specify your required values for memory and CPU in the resources section of the manifest file. This way, you can avoid the OOM Killed (where
"OOM" stands for Out Of Memory) and CPU throttle or any other resource-related issues on running instances.
For your cluster's pods to get assigned to the "Guaranteed" QoS class, you must set limits and requests for both memory and CPU to the same value.
Specify your required PostgreSQL memory parameters consistently with the pod resources (as you would do in a VM or physical machine scenario -
see below).
Set up database server pods on a dedicated node using nodeSelector. See the "nodeSelector" and "tolerations" fields of the “affinityconfiguration"
resource on the API reference page.

You can refer to the following example manifest:

 resources::
 requests::
 memory:: "32Mi"
 cpu:: "50m"
 limits::
 memory:: "128Mi"
 cpu:: "100m"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 211

https://kubernetes.io/docs/tasks/configure-pod-container/quality-service-pod/#qos-classes

In the above example, we have specified shared_buffers parameter with a value of 256MB - i.e., how much memory is dedicated to the PostgreSQL
server for caching data (the default value for this parameter is 128MB in case it's not defined).

A reasonable starting value for shared_buffers is 25% of the memory in your system. For example: if your shared_buffers is 256 MB, then the
recommended value for your container memory size is 1 GB, which means that within a pod all the containers will have a total of 1 GB memory that
Kubernetes will always preserve, enabling our containers to work as expected. For more details, please refer to the "Resource Consumption" section in the
PostgreSQL documentation.

Managing Compute Resources for ContainersManaging Compute Resources for Containers

For more details on resource management, please refer to the "Managing Compute Resources for Containers" page from the Kubernetes
documentation.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgresql-
resources
spec::

 instances:: 3

 postgresql::
 parameters::
 shared_buffers:: "256MB"

 resources::
 requests::
 memory:: "1024Mi"
 cpu:: 1
 limits::
 memory:: "1024Mi"
 cpu:: 1

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 212

https://www.postgresql.org/docs/current/runtime-config-resource.html
https://kubernetes.io/docs/concepts/configuration/manage-compute-resources-container/

19 Failure Modes

NoteNote

In previous versions of EDB Postgres for Kubernetes, this page included specific failure scenarios. Since these largely follow standard
Kubernetes behavior, we have streamlined the content to avoid duplication of information that belongs to the underlying Kubernetes stack and is
not specific to EDB Postgres for Kubernetes.

EDB Postgres for Kubernetes adheres to standard Kubernetes principles for self-healing and high availability. We assume familiarity with core Kubernetes
concepts such as storage classes, PVCs, nodes, and Pods. For EDB Postgres for Kubernetes-specific details, refer to the "Postgres Instance Manager"
section, which covers startup, liveness, and readiness probes, as well as the self-healing section below.

ImportantImportant

If you are running EDB Postgres for Kubernetes in production, we strongly recommend seeking professional support.

Self-Healing

Primary Failure

If the primary Pod fails:

The operator promotes the most up-to-date standby with the lowest replication lag.
The -rw service is updated to point to the new primary.
The failed Pod is removed from the -r and -rw services.
Standby Pods begin replicating from the new primary.
The former primary uses pg_rewind to re-synchronize if its PVC is available; otherwise, a new standby is created from a backup of the new
primary.

Standby Failure

If a standby Pod fails:

It is removed from the -r and -ro services.
The Pod is restarted using its PVC if available; otherwise, a new Pod is created from a backup of the current primary.
Once ready, the Pod is re-added to the -r and -ro services.

Manual Intervention

For failure scenarios not covered by automated recovery, manual intervention may be required.

ImportantImportant

Do not perform manual operations without professional support.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 213

https://cloudnative-pg.io/support/
https://cloudnative-pg.io/support/

Disabling Reconciliation

To temporarily disable the reconciliation loop for a PostgreSQL cluster, use the k8s.enterprisedb.io/reconciliationLoop annotation:

Use this annotation with extreme cautionwith extreme caution and only during emergency operations.

WarningWarning

This annotation should be removed as soon as the issue is resolved. Leaving it in place prevents the operator from executing self-healing actions,
including failover.

metadata::
 name:: cluster-example-no-
reconcile
 annotations::
 k8s.enterprisedb.io/reconciliationLoop:: "disabled"
spec::
 #
...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 214

20 Rolling Updates

The operator allows changing the PostgreSQL version used in a cluster while applications are running against it.

ImportantImportant

Only upgrades for PostgreSQL minor releases are supported.

Rolling upgrades are started when:

the user changes the imageName attribute of the cluster specification;

the image catalog is updated with a new image for the major used by the cluster;

a change in the PostgreSQL configuration requires a restart to be applied;

a change on the Cluster .spec.resources values

a change in size of the persistent volume claim on AKS

after the operator is updated, to ensure the Pods run the latest instance manager (unless in-place updates are enabled).

The operator starts upgrading all the replicas, one Pod at a time, and begins from the one with the highest serial.

The primary is the last node to be upgraded.

Rolling updates are configurable and can be either entirely automated (unsupervised) or requiring human intervention (supervised).

The upgrade keeps the EDB Postgres for Kubernetes identity, without re-cloning the data. Pods will be deleted and created again with the same PVCs and a
new image, if required.

During the rolling update procedure, each service endpoints move to reflect the cluster's status, so that applications can ignore the node that is being
updated.

Automated updates (unsupervised)

When primaryUpdateStrategy is set to unsupervised , the rolling update process is managed by Kubernetes and is entirely automated. Once
the replicas have been upgraded, the selected primaryUpdateMethod operation will initiate on the primary. This is the default behavior.

The primaryUpdateMethod option accepts one of the following values:

restart : if possible, perform an automated restart of the pod where the primary instance is running. Otherwise, the restart request is ignored and
a switchover issued. This is the default behavior.

switchover : a switchover operation is automatically performed, setting the most aligned replica as the new target primary, and shutting down
the former primary pod.

There's no one-size-fits-all configuration for the update method, as that depends on several factors like the actual workload of your database, the
requirements in terms of RPO and RTO, whether your PostgreSQL architecture is shared or shared nothing, and so on.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 215

Indeed, being PostgreSQL a primary/standby architecture database management system, the update process inevitably generates a downtime for your
applications. One important aspect to consider for your context is the time it takes for your pod to download the new PostgreSQL container image, as that
depends on your Kubernetes cluster settings and specifications. The switchover method makes sure that the promoted instance already runs the target
image version of the container. The restart method instead might require to download the image from the origin registry after the primary pod has been
shut down. It is up to you to determine whether, for your database, it is best to use restart or switchover as part of the rolling update procedure.

Manual updates (supervised)

When primaryUpdateStrategy is set to supervised , the rolling update process is suspended immediately after all replicas have been upgraded.

This phase can only be completed with either a manual switchover or an in-place restart. Keep in mind that image upgrades can not be applied with an in-
place restart, so a switchover is required in such cases.

You can trigger a switchover with:

You can trigger a restart with:

You can find more information in the cnp plugin page.

kubectl cnp promote [cluster]
[new_primary]

kubectl cnp restart [cluster]
[current_primary]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 216

21 Replication

Physical replication is one of the strengths of PostgreSQL and one of the reasons why some of the largest organizations in the world have chosen it for the
management of their data in business continuity contexts. Primarily used to achieve high availability, physical replication also allows scale-out of read-only
workloads and offloading of some work from the primary.

ImportantImportant

This section is about replication within the same Cluster resource managed in the same Kubernetes cluster. For information about how to
replicate with another Postgres Cluster resource, even across different Kubernetes clusters, please refer to the "Replica clusters" section.

Application-level replication

Having contributed throughout the years to the replication feature in PostgreSQL, we have decided to build high availability in EDB Postgres for Kubernetes
on top of the native physical replication technology, and integrate it directly in the Kubernetes API.

In Kubernetes terms, this is referred to as application-level replicationapplication-level replication, in contrast with storage-level replication.

A very mature technology

PostgreSQL has a very robust and mature native framework for replicating data from the primary instance to one or more replicas, built around the concept
of transactional changes continuously stored in the WAL (Write Ahead Log).

Started as the evolution of crash recovery and point in time recovery technologies, physical replication was first introduced in PostgreSQL 8.2 (2006)
through WAL shipping from the primary to a warm standby in continuous recovery.

PostgreSQL 9.0 (2010) introduced WAL streaming and read-only replicas through hot standby. In 2011, PostgreSQL 9.1 brought synchronous replication at
the transaction level, supporting RPO=0 clusters. Cascading replication was added in PostgreSQL 9.2 (2012). The foundations for logical replication were
established in PostgreSQL 9.4 (2014), and version 10 (2017) introduced native support for the publisher/subscriber pattern to replicate data from an origin
to a destination. The table below summarizes these milestones.

Version Year Feature

8.2 2006 Warm Standby with WAL shipping

9.0 2010 Hot Standby and physical streaming replication

9.1 2011 Synchronous replication (priority-based)

9.2 2012 Cascading replication

9.4 2014 Foundations of logical replication

10 2017 Logical publisher/subscriber and quorum-based synchronous replication

This table highlights key PostgreSQL replication features and their respective versions.

Streaming replication support

At the moment, EDB Postgres for Kubernetes natively and transparently manages physical streaming replicas within a cluster in a declarative way, based
on the number of provided instances in the spec :

replicas = instances - 1 (where instances > 0)

Immediately after the initialization of a cluster, the operator creates a user called streaming_replica as follows:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 217

Immediately after the initialization of a cluster, the operator creates a user called streaming_replica as follows:

Out of the box, the operator automatically sets up streaming replication within the cluster over an encrypted channel and enforces TLS client certificate
authentication for the streaming_replica user - as highlighted by the following excerpt taken from pg_hba.conf :

Require client certificate authentication for the streaming_replica user
hostssl postgres streaming_replica all cert
hostssl replication streaming_replica all cert

CertificatesCertificates

For details on how EDB Postgres for Kubernetes manages certificates, please refer to the "Certificates" section in the documentation.

If configured, the operator manages replication slots for all the replicas in the HA cluster, ensuring that WAL files required by each standby are retained on
the primary's storage, even after a failover or switchover.

Replication slots for High AvailabilityReplication slots for High Availability

For details on how EDB Postgres for Kubernetes automatically manages replication slots for the High Availability replicas, please refer to the
"Replication slots for High Availability" section below.

Continuous backup integration

In case continuous backup is configured in the cluster, EDB Postgres for Kubernetes transparently configures replicas to take advantage of
restore_command when in continuous recovery. As a result, PostgreSQL can use the WAL archive as a fallback option whenever pulling WALs via

streaming replication fails.

Synchronous Replication

EDB Postgres for Kubernetes supports both quorum-based and priority-based synchronous replication for PostgreSQL.

WarningWarning

By default, synchronous replication pauses write operations if the required number of standby nodes for WAL replication during transaction
commits is unavailable. This behavior prioritizes data durability and aligns with PostgreSQL DBA best practices. However, if self-healing is a
higher priority than strict data durability in your setup, this setting can be adjusted. For details on managing this behavior, refer to the Data
Durability and Synchronous Replication section.

Direct configuration of the synchronous_standby_names option is not permitted. However, EDB Postgres for Kubernetes automatically populates
this option with the names of local pods, while also allowing customization to extend synchronous replication beyond the Cluster resource. This can be
achieved through the .spec.postgresql.synchronous stanza.

Synchronous replication is disabled by default (the synchronous stanza is not defined). When defined, two options are mandatory:

method : either any (quorum) or first (priority)
number : the number of synchronous standby servers that transactions must wait for responses from

CREATECREATE USER streaming_replica WITHWITH REPLICATION;
-- NOSUPERUSER INHERIT NOCREATEROLE NOCREATEDB
NOBYPASSRLS

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 218

https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION

Quorum-based Synchronous Replication

In PostgreSQL, quorum-based synchronous replication ensures that transaction commits wait until their WAL records are replicated to a specified number
of standbys. To enable this, set the method to any .

This replication method is the most common setup for a EDB Postgres for Kubernetes cluster.

Example

The example below, based on a typical cluster-example configuration with three instances, sets up quorum-based synchronous replication with at
least one instance:

With this configuration, EDB Postgres for Kubernetes automatically sets the content of synchronous_standby_names as follows:

ANY 1 (cluster-example-2, cluster-example-3, cluster-example-1)

Migrating from Deprecated Synchronous Replication Implementation

This section outlines how to migrate from the deprecated quorum-based synchronous replication format to the newer, more robust implementation in EDB
Postgres for Kubernetes.

Given the following manifest:

You can update it to the new format as follows:

postgresql::
 synchronous::
 method::
any
 number:: 1

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: angus
spec::
 instances:: 3
 minSyncReplicas:: 1
 maxSyncReplicas:: 1

 storage::
 size:: 1G

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 219

To prioritize self-healing over strict data durability, set dataDurability to preferred instead.

Priority-based Synchronous Replication

PostgreSQL's priority-based synchronous replication makes transaction commits wait until their WAL records are replicated to the requested number of
synchronous standbys chosen based on their priorities. Standbys listed earlier in the synchronous_standby_names option are given higher priority
and considered synchronous. If a current synchronous standby disconnects, it is immediately replaced by the next-highest-priority standby. To use this
method, set method to first .

ImportantImportant

Currently, this method is most useful when extending synchronous replication beyond the current cluster using the
maxStandbyNamesFromCluster , standbyNamesPre , and standbyNamesPost options explained below.

Controlling synchronous_standby_names Content

By default, EDB Postgres for Kubernetes populates synchronous_standby_names with the names of local pods in a Cluster resource, ensuring
synchronous replication within the PostgreSQL cluster. You can customize the content of synchronous_standby_names based on your requirements
and replication method (quorum or priority) using the following optional parameters in the .spec.postgresql.synchronous stanza:

maxStandbyNamesFromCluster : the maximum number of pod names from the local Cluster object that can be automatically included in
the synchronous_standby_names option in PostgreSQL.
standbyNamesPre : a list of standby names (specifically application_name) to be prepended to the list of local pod names automatically

listed by the operator.
standbyNamesPost : a list of standby names (specifically application_name) to be appended to the list of local pod names automatically

listed by the operator.

WarningWarning

You are responsible for ensuring the correct names in standbyNamesPre and standbyNamesPost . EDB Postgres for Kubernetes expects
that you manage any standby with an application_name listed here, ensuring their high availability. Incorrect entries can jeopardize your
PostgreSQL database uptime.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: angus
spec::
 instances:: 3

 storage::
 size:: 1G

 postgresql::
 synchronous::
 method::
any
 number:: 1
 dataDurability::
required

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 220

Examples

Here are some examples, all based on a cluster-example with three instances:

If you set:

The content of synchronous_standby_names will be:

ANY 1 (angus, cluster-example-2)

If you set:

The content of synchronous_standby_names will be:

ANY 1 (angus, malcolm)

If you set:

The synchronous_standby_names option will look like:

FIRST 2 (angus, cluster-example-2, malcolm)

postgresql::
 synchronous::
 method::
any
 number:: 1
 maxStandbyNamesFromCluster:: 1
 standbyNamesPre::
 -- angus

postgresql::
 synchronous::
 method::
any
 number:: 1
 maxStandbyNamesFromCluster:: 0
 standbyNamesPre::
 -- angus
 -- malcolm

postgresql::
 synchronous::
 method:: first
 number:: 2
 maxStandbyNamesFromCluster:: 1
 standbyNamesPre::
 -- angus
 standbyNamesPost::
 -- malcolm

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 221

Data Durability and Synchronous Replication

The dataDurability option in the .spec.postgresql.synchronous stanza controls the trade-off between data safety and availability for
synchronous replication. It can be set to required or preferred , with the default being required if not specified.

ImportantImportant

preferred can only be used when standbyNamesPre and standbyNamesPost are unset.

Required Data Durability

When dataDurability is set to required , PostgreSQL only considers transactions committed once WAL (Write-Ahead Log) records have been
replicated to the specified number of synchronous standbys. This setting prioritizes data safety over availability, meaning write operations will pause if the
required number of synchronous standbys is unavailable. This ensures zero data loss (RPO=0) but may reduce database availability during network
disruptions or standby failures.

Synchronous standbys are selected in this priority order:

1. Healthy instances
2. Unhealthy instances
3. Primary

The list is then truncated based on maxStandbyNamesFromCluster if this value is set, prioritizing healthy instances and ensuring
synchronous_standby_names is populated.

Example

Consider the following example:

1. Initial state. The content of synchronous_standby_names is:

ANY 1 ("foo-2","foo-3","foo-1")

2. foo-2 becomes unavailable. It gets pushed back in priority:

ANY 1 ("foo-3","foo-2","foo-1")

foo-3 also becomes unavailable. The list contains no healthy standbys:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name::
foo
spec::
 instances:: 3
 postgresql::
 synchronous::
 method::
any
 number:: 1
 dataDurability::
required

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 222

3. foo-3 also becomes unavailable. The list contains no healthy standbys:

ANY 1 ("foo-2","foo-3","foo-1")

At this point no write operations will be allowed until at least one of the standbys is available again.

4. When the standbys are available again, synchronous_standby_names will be back to the initial state.

Preferred Data Durability

When dataDurability is set to preferred , the required number of synchronous instances adjusts based on the number of available standbys.
PostgreSQL will attempt to replicate WAL records to the designated number of synchronous standbys, but write operations will continue even if fewer than
the requested number of standbys are available.

ImportantImportant

Make sure you have a clear understanding of what ready/available means for a replica and set your expectations accordingly. By default, a
replica is considered ready when it has successfully connected to the source at least once. However, EDB Postgres for Kubernetes allows you to
configure startup and readiness probes for replicas based on maximum lag. For more details, please refer to the "Postgres instance manager"
section.

This setting balances data safety with availability, enabling applications to continue writing during temporary standby unavailability—hence, it’s also
known as self-healing mode.

WarningWarning

This mode may result in data loss if all standbys become unavailable.

With preferred data durability, only healthy replicasonly healthy replicas are included in synchronous_standby_names .

Example

Consider the following example. For demonstration, we’ll use a cluster named bar with 5 instances and 2 synchronous standbys:

1. Initial state. The content of synchronous_standby_names is:

ANY 2 ("bar-2","bar-3", "bar-4", "bar-5")

bar-2 and bar-3 become unavailable. They are removed from the list:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name::
bar
spec::
 instances:: 5
 postgresql::
 synchronous::
 method::
any
 number:: 2
 dataDurability:: preferred

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 223

2. bar-2 and bar-3 become unavailable. They are removed from the list:

ANY 2 ("bar-4", "bar-5")

3. bar-4 also becomes unavailable. It gets removed from the list. Since the number of available standbys is less than the requested number, the
requested amount gets reduced:

ANY 1 ("bar-5")

4. bar-5 also becomes unavailable. synchronous_standby_names becomes empty, disabling synchronous replication completely. Write
operations will continue, but with the risk of potential data loss in case of a primary failure.

5. When the replicas are back, synchronous_standby_names will be back to the initial state.

Synchronous Replication (Deprecated)

WarningWarning

Prior to EDB Postgres for Kubernetes 1.24, only the quorum-based synchronous replication implementation was supported. Although this
method is now deprecated, it will not be removed anytime soon. The new method prioritizes data durability over self-healing and offers more
robust features, including priority-based synchronous replication and full control over the synchronous_standby_names option. It is
recommended to gradually migrate to the new configuration method for synchronous replication, as explained in the previous paragraph.

ImportantImportant

The deprecated method and the new method are mutually exclusive.

EDB Postgres for Kubernetes supports the configuration of quorum-based synchronous streaming replicationquorum-based synchronous streaming replication via two configuration options called
minSyncReplicas and maxSyncReplicas , which are the minimum and the maximum number of expected synchronous standby replicas available

at any time. For self-healing purposes, the operator always compares these two values with the number of available replicas to determine the quorum.

ImportantImportant

By default, synchronous replication selects among all the available replicas indistinctively. You can limit on which nodes your synchronous
replicas can be scheduled, by working on node labels through the syncReplicaElectionConstraint option as described in the next
section.

Synchronous replication is disabled by default (minSyncReplicas and maxSyncReplicas are not defined). In case both minSyncReplicas
and maxSyncReplicas are set, EDB Postgres for Kubernetes automatically updates the synchronous_standby_names option in PostgreSQL to
the following value:

ANY q (pod1, pod2, ...)

Where:

q is an integer automatically calculated by the operator to be: 1 <= minSyncReplicas <= q <= maxSyncReplicas <=
readyReplicas
pod1, pod2, ... is the list of all PostgreSQL pods in the cluster

WarningWarning

To provide self-healing capabilities, the operator can ignore minSyncReplicas if such value is higher than the currently available number of
replicas. Synchronous replication is automatically disabled when readyReplicas is 0 .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 224

As stated in the PostgreSQL documentation, the method ANY specifies a quorum-based synchronous replication and makes transaction commits wait
until their WAL records are replicated to at least the requested number of synchronous standbys in the list.

ImportantImportant

Even though the operator chooses self-healing over enforcement of synchronous replication settings, our recommendation is to plan for
synchronous replication only in clusters with 3+ instances or, more generally, when maxSyncReplicas < (instances - 1) .

Select nodes for synchronous replication

EDB Postgres for Kubernetes enables you to select which PostgreSQL instances are eligible to participate in a quorum-based synchronous replication set
through anti-affinity rules based on the node labels where the PVC holding the PGDATA and the Postgres pod are.

SchedulingScheduling

For more information on the general pod affinity and anti-affinity rules, please check the "Scheduling" section.

WarningWarning

The .spec.postgresql.syncReplicaElectionConstraint option only applies to the legacy implementation of synchronous
replication (see "Synchronous Replication (Deprecated)").

As an example use-case for this feature: in a cluster with a single sync replica, we would be able to ensure the sync replica will be in a different availability
zone from the primary instance, usually identified by the topology.kubernetes.io/zone label on a node. This would increase the robustness of the
cluster in case of an outage in a single availability zone, especially in terms of recovery point objective (RPO).

The idea of anti-affinity is to ensure that sync replicas that participate in the quorum are chosen from pods running on nodes that have different values for
the selected labels (in this case, the availability zone label) then the node where the primary is currently in execution. If no node matches such criteria, the
replicas are eligible for synchronous replication.

ImportantImportant

The self-healing enforcement still applies while defining additional constraints for synchronous replica election (see "Synchronous replication").

The example below shows how this can be done through the syncReplicaElectionConstraint section within .spec.postgresql .
nodeLabelsAntiAffinity allows you to specify those node labels that need to be evaluated to make sure that synchronous replication will be

dynamically configured by the operator between the current primary and the replicas which are located on nodes having a value of the availability zone
label different from that of the node where the primary is:

As you can imagine, the availability zone is just an example, but you could customize this behavior based on other labels that describe the node, such as
storage, CPU, or memory.

spec::
 instances:: 3
 postgresql::
 syncReplicaElectionConstraint::
 enabled:: true
 nodeLabelsAntiAffinity::
 -- topology.kubernetes.io/zone

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 225

https://www.postgresql.org/docs/current/warm-standby.html#SYNCHRONOUS-REPLICATION
https://kubernetes.io/docs/reference/labels-annotations-taints/#topologykubernetesiozone

Replication slots

Replication slots are a native PostgreSQL feature introduced in 9.4 that provides an automated way to ensure that the primary does not remove WAL
segments until all the attached streaming replication clients have received them, and that the primary does not remove rows which could cause a recovery
conflict even when the standby is (temporarily) disconnected.

A replication slot exists solely on the instance that created it, and PostgreSQL does not replicate it on the standby servers. As a result, after a failover or a
switchover, the new primary does not contain the replication slot from the old primary. This can create problems for the streaming replication clients that
were connected to the old primary and have lost their slot.

EDB Postgres for Kubernetes provides a turn-key solution to synchronize the content of physical replication slots from the primary to each standby,
addressing two use cases:

the replication slots automatically created for the High Availability of the Postgres cluster (see "Replication slots for High Availability" below for
details)
user-defined replication slots created on the primary

Replication slots for High Availability

EDB Postgres for Kubernetes fills this gap by introducing the concept of cluster-managed replication slots, starting with high availability clusters. This
feature automatically manages physical replication slots for each hot standby replica in the High Availability cluster, both in the primary and the standby.

In EDB Postgres for Kubernetes, we use the terms:

Primary HA slotPrimary HA slot: a physical replication slot whose lifecycle is entirely managed by the current primary of the cluster and whose purpose is to map to
a specific standby in streaming replication. Such a slot lives on the primary only.
Standby HA slotStandby HA slot: a physical replication slot for a standby whose lifecycle is entirely managed by another standby in the cluster, based on the
content of the pg_replication_slots view in the primary, and updated at regular intervals using pg_replication_slot_advance() .

This feature is enabled by default and can be disabled via configuration. For details, please refer to the "replicationSlots" section in the API reference. Here
follows a brief description of the main options:

.spec.replicationSlots.highAvailability.enabled : if true , the feature is enabled (true is the default)

.spec.replicationSlots.highAvailability.slotPrefix : the prefix that identifies replication slots managed by the operator for this
feature (default: _cnp_)

.spec.replicationSlots.updateInterval : how often the standby synchronizes the position of the local copy of the replication slots with the
position on the current primary, expressed in seconds (default: 30)

Although it is not recommended, if you desire a different behavior, you can customize the above options.

For example, the following manifest will create a cluster with replication slots disabled.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 226

https://www.postgresql.org/docs/current/warm-standby.html#STREAMING-REPLICATION-SLOTS

User-Defined Replication slots

Although EDB Postgres for Kubernetes doesn't support a way to declaratively define physical replication slots, you can still create your own slots via SQL.

rmationrmation

At the moment, we don't have any plans to manage replication slots in a declarative way, but it might change depending on the feedback we
receive from users. The reason is that replication slots exist for a specific purpose and each should be managed by a specific application the
oversees the entire lifecycle of the slot on the primary.

EDB Postgres for Kubernetes can manage the synchronization of any user managed physical replication slots between the primary and standbys, similarly
to what it does for the HA replication slots explained above (the only difference is that you need to create the replication slot).

This feature is enabled by default (meaning that any replication slot is synchronized), but you can disable it or further customize its behavior (for example
by excluding some slots using regular expressions) through the synchronizeReplicas stanza. For example:

For details, please refer to the "replicationSlots" section in the API reference. Here follows a brief description of the main options:

.spec.replicationSlots.synchronizeReplicas.enabled : When true or not specified, every user-defined replication slot on the primary is
synchronized on each standby. If changed to false, the operator will remove any replication slot previously created by itself on each standby.

.spec.replicationSlots.synchronizeReplicas.excludePatterns : A list of regular expression patterns to match the names of user-
defined replication slots to be excluded from synchronization. This can be useful to exclude specific slots based on naming conventions.

WarningWarning

Users utilizing this feature should carefully monitor user-defined replication slots to ensure they align with their operational requirements and
do not interfere with the failover process.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 # Disable replication slots for HA in the
cluster
 replicationSlots::
 highAvailability::
 enabled:: false

 storage::
 size::
1Gi

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 replicationSlots::
 synchronizeReplicas::
 enabled:: true
 excludePatterns::
 -- "^foo"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 227

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-REPLICATION

Synchronization frequency

You can also control the frequency with which a standby queries the pg_replication_slots view on the primary, and updates its local copy of the
replication slots, like in this example:

Capping the WAL size retained for replication slots

When replication slots is enabled, you might end up running out of disk space due to PostgreSQL trying to retain WAL files requested by a replication slot.
This might happen due to a standby that is (temporarily?) down, or lagging, or simply an orphan replication slot.

Starting with PostgreSQL 13, you can take advantage of the max_slot_wal_keep_size configuration option controlling the maximum size of WAL
files that replication slots are allowed to retain in the pg_wal directory at checkpoint time. By default, in PostgreSQL max_slot_wal_keep_size is
set to -1 , meaning that replication slots may retain an unlimited amount of WAL files. As a result, our recommendation is to explicitly set
max_slot_wal_keep_size when replication slots support is enabled. For example:

Monitoring replication slots

Replication slots must be carefully monitored in your infrastructure. By default, we provide the pg_replication_slots metric in our Prometheus
exporter with key information such as the name of the slot, the type, whether it is active, the lag from the primary.

MonitoringMonitoring

Please refer to the "Monitoring" section for details on how to monitor a EDB Postgres for Kubernetes deployment.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 # Reduce the frequency of standby HA slots updates to once every 5
minutes
 replicationSlots::
 updateInterval:: 300

 storage::
 size::
1Gi

 #
...

postgresql:

parameters:
 max_slot_wal_keep_size:
"10GB"
 #
...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 228

https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-MAX-SLOT-WAL-KEEP-SIZE

22 Backup

InfoInfo

This section covers physical backupsphysical backups in PostgreSQL. While PostgreSQL also supports logical backups using the pg_dump utility, these are notnot
suitable for business continuitysuitable for business continuity and are not managednot managed by EDB Postgres for Kubernetes. If you still wish to use pg_dump , refer to the
Troubleshooting / Emergency backup section for guidance.

ImportantImportant

Starting with version 1.26, native backup and recovery capabilities are being progressively phased outprogressively phased out of the core operator and moved to official
CNP-I plugins. This transition aligns with EDB Postgres for Kubernetes' shift towards a backup-agnostic architecturebackup-agnostic architecture, enabled by its extensible
interface—CNP-ICNP-I—which standardizes the management of WAL archivingWAL archiving, physical base backupsphysical base backups, and corresponding recovery processesrecovery processes.

EDB Postgres for Kubernetes currently supports physical backups of PostgreSQL clustersphysical backups of PostgreSQL clusters in two main ways:

Via Via CNPG-ICNPG-I plugins plugins: the EDB Postgres for Kubernetes Community officially supports the Barman Cloud PluginBarman Cloud Plugin for integration with object storage
services.

NativelyNatively, with support for:

Object storage via Barman Cloud (although deprecated from 1.26 in favor of the Barman Cloud Plugin)
Kubernetes Volume Snapshots, if supported by the underlying storage class

Before selecting a backup strategy with EDB Postgres for Kubernetes, it's important to familiarize yourself with the foundational concepts covered in the
"Main Concepts" section. These include WAL archiving, hot and cold backups, performing backups from a standby, and more.

Main Concepts

PostgreSQL natively provides first class backup and recovery capabilities based on file system level (physical) copy. These have been successfully used for
more than 15 years in mission critical production databases, helping organizations all over the world achieve their disaster recovery goals with Postgres.

In EDB Postgres for Kubernetes, the backup infrastructure for each PostgreSQL cluster is made up of the following resources:

WAL archiveWAL archive: a location containing the WAL files (transactional logs) that are continuously written by Postgres and archived for data durability
Physical base backupsPhysical base backups: a copy of all the files that PostgreSQL uses to store the data in the database (primarily the PGDATA and any tablespace)

CNP-I provides a generic and extensible interface for managing WAL archiving (both archive and restore operations), as well as the base backup and
corresponding restore processes.

WAL archive

The WAL archive in PostgreSQL is at the heart of continuous backupcontinuous backup, and it is fundamental for the following reasons:

Hot backupsHot backups: the possibility to take physical base backups from any instance in the Postgres cluster (either primary or standby) without shutting
down the server; they are also known as online backups
Point in Time recoveryPoint in Time recovery (PITR): the possibility to recover at any point in time from the first available base backup in your system

WarningWarning

WAL archive alone is useless. Without a physical base backup, you cannot restore a PostgreSQL cluster.

In general, the presence of a WAL archive enhances the resilience of a PostgreSQL cluster, allowing each instance to fetch any required WAL file from the
archive if needed (normally the WAL archive has higher retention periods than any Postgres instance that normally recycles those files).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 229

https://github.com/cloudnative-pg/cnpg-i/
https://cloudnative-pg.io/plugin-barman-cloud/

This use case can also be extended to replica clusters, as they can simply rely on the WAL archive to synchronize across long distances, extending disaster
recovery goals across different regions.

When you configure a WAL archive, EDB Postgres for Kubernetes provides out-of-the-box an RPO <= 5 minutes for disaster recovery, even across regions.

ImportantImportant

Our recommendation is to always setup the WAL archive in production. There are known use cases — normally involving staging and development
environments — where none of the above benefits are needed and the WAL archive is not necessary. RPO in this case can be any value, such as 24
hours (daily backups) or infinite (no backup at all).

Cold and Hot backups

Hot backups have already been defined in the previous section. They require the presence of a WAL archive, and they are the norm in any modern database
management system.

Cold backupsCold backups, also known as offline backups, are instead physical base backups taken when the PostgreSQL instance (standby or primary) is shut down.
They are consistent per definition, and they represent a snapshot of the database at the time it was shut down.

As a result, PostgreSQL instances can be restarted from a cold backup without the need of a WAL archive, even though they can take advantage of it, if
available (with all the benefits on the recovery side highlighted in the previous section).

In those situations with a higher RPO (for example, 1 hour or 24 hours), and shorter retention periods, cold backups represent a viable option to be
considered for your disaster recovery plans.

Comparing Available Backup Options: Object Stores vs Volume Snapshots

EDB Postgres for Kubernetes currently supports two main approaches for physical backups:

Object store–based backupsObject store–based backups, via the Barman Cloud PluginBarman Cloud Plugin or the deprecated native integrationdeprecated native integration
Volume SnapshotsVolume Snapshots, using the Kubernetes CSI interface and supported storage classes

ImportantImportant

CNP-I is designed to enable third parties to build and integrate their own backup plugins. Over time, we expect the ecosystem of supported
backup solutions to grow.

Object Store–Based Backups

Backups to an object store (e.g. AWS S3, Azure Blob, GCS):

Always require WAL archiving
Support hot backups only
Do not support incremental or differential copies
Support retention policies

Volume Snapshots

Native volume snapshots:

Do not require WAL archiving, though its use is still strongly recommended in production
Support incremental and differential copies, depending on the capabilities of the underlying storage class
Support both hot and cold backups
Do not support retention policies

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 230

https://cloudnative-pg.io/plugin-barman-cloud/

Choosing Between the Two

The best approach depends on your environment and operational requirements. Consider the following factors:

Object store availabilityObject store availability: Ensure your Kubernetes cluster can access a reliable object storage solution, including a stable networking layer.
Storage class capabilitiesStorage class capabilities: Confirm that your storage class supports CSI volume snapshots with incremental/differential features.
Database sizeDatabase size: For very large databases (VLDBs), volume snapshots are generally preferredvolume snapshots are generally preferred as they enable faster recovery due to copy-on-write
technology—this significantly improves your Recovery Time Objective (RTO).
Data mobilityData mobility: Object store–based backups may offer greater flexibility for replicating or storing backups across regions or environments.
Operational familiarityOperational familiarity: Choose the method that aligns best with your team's experience and confidence in managing storage.

Comparison Summary

Feature Object Store Volume Snapshots

WAL archivingWAL archiving Required Recommended^1^

Cold backupCold backup ❌ ✅

Hot backupHot backup ✅ ✅

Incremental copyIncremental copy ❌ ✅ ^2^

Differential copyDifferential copy ❌ ✅ ^2^

Backup from a standbyBackup from a standby ✅ ✅

Snapshot recoverySnapshot recovery ❌ ^3^ ✅

Retention policiesRetention policies ✅ ❌

Point-in-Time Recovery (PITR)Point-in-Time Recovery (PITR) ✅ Requires WAL archive

Underlying technologyUnderlying technology Barman Cloud Kubernetes API

Notes:Notes:

1. WAL archiving must currently use an object store through a plugin (or the deprecated native one).
2. Availability of incremental and differential copies depends on the capabilities of the storage class used for PostgreSQL volumes.
3. Snapshot recovery can be emulated by using the bootstrap.recovery.recoveryTarget.targetImmediate option.

Scheduled Backups

Scheduled backups are the recommended way to implement a reliable backup strategy in EDB Postgres for Kubernetes. They are defined using the
ScheduledBackup custom resource.

InfoInfo

For a complete list of configuration options, refer to the ScheduledBackupSpec in the API reference.

Cron Schedule

The schedule field defines whenwhen the backup should occur, using a six-field cron expression that includes seconds. This format follows the Go cron
package specification.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 231

https://pkg.go.dev/github.com/robfig/cron#hdr-CRON_Expression_Format

WarningWarning

This format differs from the traditional Unix/Linux crontab —it includes a secondsseconds field as the first entry.

Example of a daily scheduled backup:

The schedule "0 0 0 * * *" triggers a backup every day at midnight (00:00:00). In Kubernetes CronJobs, the equivalent expression would be 0 0 *
* * , since seconds are not supported.

Backup Frequency and RTO

HintHint

The frequency of your backups directly impacts your Recovery Time ObjectiveRecovery Time Objective (RTO).

To optimize your disaster recovery strategy based on continuous backup:

Regularly test restoring from your backups.
Measure the time required for a full recovery.
Account for the size of base backups and the number of WAL files that must be retrieved and replayed.

In most cases, a weekly base backupweekly base backup is sufficient. It is rare to schedule full backups more frequently than once per day.

Immediate Backup

To trigger a backup immediately when the ScheduledBackup is created:

Pause Scheduled Backups

To temporarily stop scheduled backups from running:

Backup Owner Reference (.spec.backupOwnerReference)

Controls which Kubernetes object is set as the owner of the backup resource:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: ScheduledBackup
metadata::
 name:: backup-example
spec::
 schedule:: "0 0 0 * * *" # At midnight every
day
 backupOwnerReference:: self
 cluster::
 name:: pg-
backup
 # method: plugin, volumeSnapshot, or barmanObjectStore
(default)

spec::
 immediate:: true

spec::
 suspend:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 232

none : No owner reference (legacy behavior)
self : The ScheduledBackup object becomes the owner
cluster : The PostgreSQL cluster becomes the owner

On-Demand Backups

On-demand backups allow you to manually trigger a backup operation at any time by creating a Backup resource.

InfoInfo

For a full list of available options, see the BackupSpec in the API reference.

Example: Requesting an On-Demand Backup

To start an on-demand backup, apply a Backup request custom resource like the following:

In this example, the operator will orchestrate the backup process using the barman-cloud-backup tool and store the backup in the configured object
store.

Monitoring Backup Progress

You can check the status of the backup using:

While the backup is in progress, you'll see output similar to:

Name: backup-example
Namespace: default
...
Spec:
 Cluster:
 Name: pg-backup
Status:
 Phase: running
 Started At: 2020-10-26T13:57:40Z
Events: <none>

Once the backup has successfully completed, the phase will be set to completed , and the output will include additional metadata:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Backup
metadata::
 name:: backup-example
spec::
 method:: barmanObjectStore
 cluster::
 name:: pg-
backup

kubectl describe backup backup-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 233

Name: backup-example
Namespace: default
...
Status:
 Backup Id: 20201026T135740
 Destination Path: s3://backups/
 Endpoint URL: http://minio:9000
 Phase: completed
 S3 Credentials:
 Access Key Id:
 Name: minio
 Key: ACCESS_KEY_ID
 Secret Access Key:
 Name: minio
 Key: ACCESS_SECRET_KEY
 Server Name: pg-backup
 Started At: 2020-10-26T13:57:40Z
 Stopped At: 2020-10-26T13:57:44Z

ImportantImportant

On-demand backups do notnot include Kubernetes secrets for the PostgreSQL superuser or application user. You should ensure these secrets are
included in your broader Kubernetes cluster backup strategy.

Backup Methods

EDB Postgres for Kubernetes currently supports the following backup methods for scheduled and on-demand backups:

plugin – Uses a CNP-I plugin (requires .spec.pluginConfiguration)
volumeSnapshot – Uses native Kubernetes volume snapshots
barmanObjectStore – Uses Barman Cloud for object storage (deprecated starting with v1.26 in favor of the Barman Cloud Plugin, but still the

default for backward compatibility)

Specify the method using the .spec.method field (defaults to barmanObjectStore).

If your cluster is configured to support volume snapshots, you can enable scheduled snapshot backups like this:

To use the Barman Cloud Plugin as the backup method, set method: plugin and configure the plugin accordingly. You can find an example in the
"Performing a Base Backup" section of the plugin documentation

spec::
 method::
volumeSnapshot

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 234

https://cloudnative-pg.io/plugin-barman-cloud/
https://cloudnative-pg.io/plugin-barman-cloud/docs/usage/#performing-a-base-backup

Backup from a Standby

Taking a base backup involves reading the entire on-disk data set of a PostgreSQL instance, which can introduce I/O contention and impact the
performance of the active workload.

To reduce this impact, EDB Postgres for Kubernetes supports taking backups from a standby instanceEDB Postgres for Kubernetes supports taking backups from a standby instance, leveraging PostgreSQL’s built-in capability to
perform backups from read-only replicas.

By default, backups are performed on the most up-to-date replicamost up-to-date replica in the cluster. If no replicas are available, the backup will fall back to the primaryprimary
instanceinstance.

NoteNote

The examples in this section are focused on backup target selection and do not take the backup method (spec.method) into account, as it is
not relevant to the scope being discussed.

How It Works

When prefer-standby is the target (the default behavior), EDB Postgres for Kubernetes will attempt to:

1. Identify the most synchronized standby node.
2. Run the backup process on that standby.
3. Fall back to the primary if no standbys are available.

This strategy minimizes interference with the primary’s workload.

WarningWarning

Although the standby might not always be up to date with the primary, in the time continuum from the first available backup to the last archived
WAL this is normally irrelevant. The base backup indeed represents the starting point from which to begin a recovery operation, including PITR.
Similarly to what happens with pg_basebackup , when backing up from an online standby we do not force a switch of the WAL on the primary.
This might produce unexpected results in the short term (before archive_timeout kicks in) in deployments with low write activity.

Forcing Backup on the Primary

To always run backups on the primary instance, explicitly set the backup target to primary in the cluster configuration:

WarningWarning

Be cautious when using primary as the target for cold backups using volume snapshotscold backups using volume snapshots, as this will require shutting down the primary
instance temporarily—interrupting all write operations. The same caution applies to single-instance clusters, even if you haven't explicitly set the
target.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 [[...]]
spec::
 backup::
 target:: "primary"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 235

https://www.postgresql.org/docs/current/app-pgbasebackup.html

Overriding the Cluster-Wide Target

You can override the cluster-level target on a per-backup basis, using either Backup or ScheduledBackup resources. Here's an example of an on-
demand backup:

In this example, even if the cluster’s default target is prefer-standby , the backup will be taken from the primary instance.

Retention Policies

EDB Postgres for Kubernetes is evolving toward a backup-agnostic architecturebackup-agnostic architecture, where backup responsibilities are delegated to external CNP-I pluginsCNP-I plugins.
These plugins are expected to offer advanced and customizable data protection features, including sophisticated retention management, that go beyond
the built-in capabilities and scope of EDB Postgres for Kubernetes.

As part of this transition, the spec.backup.retentionPolicy field in the Cluster resource is deprecateddeprecated and will be removed in a future release.

For more details on available retention features, refer to your chosen plugin’s documentation. For example: "Retention Policies" with Barman Cloud Plugin.

ImportantImportant

Users are encouraged to rely on the retention mechanisms provided by the backup plugin they are using. This ensures better flexibility and
consistency with the backup method in use.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Backup
metadata::
 [[...]]
spec::
 cluster::
 name:: [[...]]
 target:: "primary"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 236

https://cloudnative-pg.io/plugin-barman-cloud/docs/retention/

23 Recovery

In PostgreSQL, recoveryrecovery refers to the process of starting an instance from an existing physical backup. PostgreSQL's recovery system is robust and feature-
rich, supporting Point-In-Time Recovery (PITR)Point-In-Time Recovery (PITR)—the ability to restore a cluster to any specific moment, from the earliest available backup to the latest
archived WAL file.

ImportantImportant

A valid WAL archive is required to perform PITR.

In EDB Postgres for Kubernetes, recovery is not performed in-placenot performed in-place on an existing cluster. Instead, it is used to bootstrap a new clusterbootstrap a new cluster from a physical
backup.

NoteNote

For more details on configuring the bootstrap stanza, refer to Bootstrap.

The recovery bootstrap mode allows you to initialize a cluster from a physical base backup and replay the associated WAL files to bring the system to a
consistent and optionally point-in-time state.

EDB Postgres for Kubernetes supports recovery via:

A pluggable backup and recovery interface (CNP-I)pluggable backup and recovery interface (CNP-I), enabling integration with external tools such as the Barman Cloud Plugin.
Native recovery from volume snapshotsNative recovery from volume snapshots, where supported by the underlying Kubernetes storage infrastructure.
Native recovery from object stores via Barman CloudNative recovery from object stores via Barman Cloud, which is deprecateddeprecated as of version 1.26 in favor of the plugin-based approach.

With the deprecation of native Barman Cloud support in version 1.26, this section now focuses on two supported recovery methods: using the BarmanBarman
Cloud PluginCloud Plugin for recovery from object stores, and the native interfacenative interface for recovery from volume snapshots.

ImportantImportant

For legacy documentation, see Appendix B – Recovery from an Object Store.

Recovery from an Object Store with the Barman Cloud Plugin

This section outlines how to recover a PostgreSQL cluster from an object store using the recommended Barman Cloud Plugin.

ImportantImportant

The object store must contain backup data produced by a EDB Postgres for Kubernetes Cluster —either using the deprecated native Barmandeprecated native Barman
Cloud integrationCloud integration or the Barman Cloud PluginBarman Cloud Plugin.

InfoInfo

For full details, refer to the “Recovery of a Postgres Cluster” section in the Barman Cloud Plugin documentation.

Begin by defining the object store that holds both your base backups and WAL files. The Barman Cloud Plugin uses a custom ObjectStore resource for
this purpose. The following example shows how to configure one for Azure Blob Storage:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 237

https://cloudnative-pg.io/plugin-barman-cloud/
https://cloudnative-pg.io/plugin-barman-cloud/docs/concepts/#recovery-of-a-postgres-cluster

Next, configure the Cluster resource to use the ObjectStore you defined. In the bootstrap section, specify the recovery source, and define an
externalCluster entry that references the plugin:

Recovery from VolumeSnapshot Objects

WarningWarning

When creating replicas after recovering a primary instance from a VolumeSnapshot , the operator may fall back to using pg_basebackup
to synchronize them. This process can be significantly slower—especially for large databases—because it involves a full base backup. This
limitation will be addressed in the future with support for online backups and PVC cloning in the scale-up process.

EDB Postgres for Kubernetes allows you to create a new cluster from a VolumeSnapshot of a PersistentVolumeClaim (PVC) that belongs to an

apiVersion::
barmancloud.k8s.enterprisedb.io/v1
kind::
ObjectStore
metadata::
 name:: cluster-example-
backup
spec::
 configuration::
 destinationPath:: https://STORAGEACCOUNTNAME.blob.core.windows.net/CONTAINERNAME/
 azureCredentials::
 storageAccount::
 name:: recovery-object-store-secret
 key:: storage_account_name
 storageKey::
 name:: recovery-object-store-secret
 key::
storage_account_key
 wal::
 maxParallel:: 8

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
restore
spec::
 [[...]]

 superuserSecret::
 name:: superuser-secret

 bootstrap::
 recovery::
 source::
origin

 externalClusters::
 -- name::
origin
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: cluster-example-
backup
 serverName:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 238

EDB Postgres for Kubernetes allows you to create a new cluster from a VolumeSnapshot of a PersistentVolumeClaim (PVC) that belongs to an
existing Cluster . These snapshots are created using the declarative API for volume snapshot backups.

To complete the recovery process, the new cluster must also reference an external cluster that provides access to the WAL archive needed to reapply
changes and finalize the recovery.

The following example shows a cluster being recovered using both a VolumeSnapshot for the base backup and a WAL archive accessed through the
Barman Cloud Plugin:

In case the backed-up cluster was using a separate PVC to store the WAL files, the recovery must include that too:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
restore
spec::
 [[...]]

 bootstrap::
 recovery::
 source::
origin
 volumeSnapshots::
 storage::
 name:: <snapshot name>
 kind::
VolumeSnapshot
 apiGroup:: snapshot.storage.k8s.io

 externalClusters::
 -- name::
origin
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: cluster-example-
backup
 serverName:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 239

The previous example assumes that the application database and its owning user are named app by default. If the PostgreSQL cluster being restored uses
different names, you must specify these names before exiting the recovery phase, as documented in "Configure the application database".

WarningWarning

If bootstrapping a replica-mode cluster from snapshots, to leverage snapshots for the standby instances and not just the primary, we recommend
that you:

1. Start with a single instance replica cluster. The primary instance will be recovered using the snapshot, and available WALs from the source
cluster.

2. Take a snapshot of the primary in the replica cluster.
3. Increase the number of instances in the replica cluster as desired.

Recovery from a Backup object

If a Backup resource is already available in the namespace in which you need to create the cluster, you can specify the name using
.spec.bootstrap.recovery.backup.name , as in the following example:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
restore
spec::
 [[...]]

 bootstrap::
 recovery::
 volumeSnapshots::
 storage::
 name:: <snapshot name>
 kind::
VolumeSnapshot
 apiGroup:: snapshot.storage.k8s.io

 walStorage::
 name:: <snapshot name>
 kind::
VolumeSnapshot
 apiGroup:: snapshot.storage.k8s.io

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
initdb
spec::
 instances:: 3

 bootstrap::
 recovery::
 backup::
 name:: backup-example

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 240

This bootstrap method allows you to specify just a reference to the backup that needs to be restored.

The previous example assumes that the application database and its owning user are named app by default. If the PostgreSQL cluster being restored uses
different names, you must specify these names before exiting the recovery phase, as documented in "Configure the application database".

Additional Considerations

Whether you recover from an object store, a volume snapshot, or an existing Backup resource, no changes to the database, including the catalog, are
permitted until the Cluster is fully promoted to primary and accepts write operations. This restriction includes any role overrides, which are deferred
until the Cluster transitions to primary. As a result, the following considerations apply:

The application database name and user are copied from the backup being restored. The operator does not currently back up the underlying secrets,
as this is part of the usual maintenance activity of the Kubernetes cluster.
To preserve the original postgres user password, configure enableSuperuserAccess and supply a superuserSecret .

By default, recovery continues up to the latest available WAL on the default target timeline (latest). You can optionally specify a recoveryTarget
to perform a point-in-time recovery (see Point in Time Recovery (PITR)).

ImportantImportant

Consider using the barmanObjectStore.wal.maxParallel option to speed up WAL fetching from the archive by concurrently
downloading the transaction logs from the recovery object store.

Point in time recovery (PITR)

Instead of replaying all the WALs up to the latest one, after extracting a base backup, you can ask PostgreSQL to stop replaying WALs at any given point in
time. PostgreSQL uses this technique to achieve PITR. The presence of a WAL archive is mandatory.

ImportantImportant

PITR requires you to specify a recovery target by using the options described in Recovery targets.

The operator generates the configuration parameters required for this feature to work if you specify a recovery target.

PITR from an object store

This example uses the same recovery object store in Azure defined earlier for the Barman Cloud plugin, containing both the base backups and the WAL
archive. The recovery target is based on a requested timestamp.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 241

In this example, you had to specify only the targetTime in the form of a timestamp. You didn't have to specify the base backup from which to start the
recovery.

The backupID option is the one that allows you to specify the base backup from which to initiate the recovery process. By default, this value is empty.

If you assign a value to it (in the form of a Barman backup ID), the operator uses that backup as the base for the recovery.

ImportantImportant

You need to make sure that such a backup exists and is accessible.

If you don't specify the backup ID, the operator detects the base backup for the recovery as follows:

When you use targetTime or targetLSN , the operator selects the closest backup that was completed before that target.
Otherwise, the operator selects the last available backup, in chronological order.

Point-in-Time Recovery (PITR) from VolumeSnapshot Objects

The following example demonstrates how to perform a Point-in-Time Recovery (PITR)Point-in-Time Recovery (PITR) using:

A Kubernetes VolumeSnapshot of the PGDATA directory, which provides the base backup. This snapshot is specified in the
recovery.volumeSnapshots section and is named test-snapshot-1 .

A recovery object store (in this case, MinIO) containing the archived WAL files. The object store is defined via a Barman Cloud Plugin
ObjectStore resource (not shown here), and referenced using the recovery.source field, which points to an external cluster

configuration.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-restore-
pitr
spec::
 instances:: 3

 storage::
 size::
5Gi

 bootstrap::
 recovery::
 # Recovery object store containing WAL archive and base
backups
 source::
origin
 recoveryTarget::
 # Time base target for the
recovery
 targetTime:: "2023-08-11 11:14:21.00000+02"

 externalClusters::
 -- name::
origin
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: cluster-example-
backup
 serverName:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 242

The cluster will be restored to a specific point in time using the recoveryTarget.targetTime option.

This setup enables EDB Postgres for Kubernetes to restore the base data from a volume snapshot and apply WAL segments from the object store to reach
the desired recovery target.

NoteNote

If the backed-up cluster had walStorage enabled, you also must specify the volume snapshot containing the PGWAL directory, as mentioned
in Recovery from VolumeSnapshot objects.

WarningWarning

It's your responsibility to ensure that the end time of the base backup in the volume snapshot is before the recovery target timestamp.

Recovery targets

Here are the recovery target criteria you can use:

targetTime : Time stamp up to which recovery proceeds, expressed in RFC 3339 format. (The precise stopping point is also influenced by the exclusive
option.)

WarningWarning

PostgreSQL recovery will stop when it encounters the first transaction that occurs after the specified time. If no such transaction exists after the
target time, the recovery process will fail.

targetXID : Transaction ID up to which recovery proceeds. (The precise stopping point is also influenced by the exclusive option.) Keep in mind that

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
snapshot
spec::
 #
...
 bootstrap::
 recovery::
 source::
origin
 volumeSnapshots::
 storage::
 name:: test-snapshot-1
 kind::
VolumeSnapshot
 apiGroup:: snapshot.storage.k8s.io
 recoveryTarget::
 targetTime:: "2023-07-06T08:00:39"
 externalClusters::
 -- name::
origin
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: minio-
backup
 serverName:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 243

https://datatracker.ietf.org/doc/html/rfc3339

targetXID : Transaction ID up to which recovery proceeds. (The precise stopping point is also influenced by the exclusive option.) Keep in mind that
while transaction IDs are assigned sequentially at transaction start, transactions can complete in a different numeric order. The transactions that are
recovered are those that committed before (and optionally including) the specified one.

targetName : Named restore point (created with pg_create_restore_point()) to which recovery proceeds.

targetLSN : LSN of the write-ahead log location up to which recovery proceeds. (The precise stopping point is also influenced by the exclusive option.)

targetImmediate : Recovery ends as soon as a consistent state is reached, that is, as early as possible. When restoring from an online backup, this means
the point where taking the backup ended.

ImportantImportant

The operator can retrieve the closest backup when you specify either targetTime or targetLSN . However, this isn't possible for the
remaining targets: targetName , targetXID , and targetImmediate . In such cases, it's mandatory to specify backupID .

This example uses a targetName -based recovery target:

You can choose only a single one among the targets in each recoveryTarget configuration.

Additionally, you can specify targetTLI to force recovery to a specific timeline.

By default, the previous parameters are considered to be inclusive, stopping just after the recovery target, matching the behavior in PostgreSQL.

You can request exclusive behavior, stopping right before the recovery target, by setting the exclusive parameter to true . The following example
shows this behavior, relying on a blob container in Azure for both base backups and the WAL archive:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
 bootstrap::
 recovery::
 source::
origin
 recoveryTarget::
 backupID:: 20220616T142236
 targetName:: 'restore_point_1'
[[...]]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 244

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-RECOVERY-TARGET-INCLUSIVE

Configure the application database

For the recovered cluster, you can configure the application database name and credentials with additional configuration. To update application database
credentials, you can generate your own passwords, store them as secrets, and update the database to use the secrets. Or you can also let the operator
generate a secret with a randomly secure password for use. See Bootstrap an empty cluster for more information about secrets.

ImportantImportant

While the Cluster is in recovery mode, no changes to the database, including the catalog, are permitted. This restriction includes any role
overrides, which are deferred until the Cluster transitions to primary. During this phase, users remain as defined in the source cluster.

The following example configures the app database with the owner app and the password stored in the provided secret app-secret , following the
bootstrap from a live cluster.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-restore-
pitr
spec::
 instances:: 3

 storage::
 size::
5Gi

 bootstrap::
 recovery::
 source::
origin
 recoveryTarget::
 backupID:: 20220616T142236
 targetName:: "maintenance-activity"
 exclusive:: true

 externalClusters::
 -- name::
origin
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: cluster-example-
backup
 serverName:: cluster-
example

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 bootstrap::
 recovery::
 database::
app
 owner::
app
 secret::
 name:: app-secret
 [[...]]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 245

With the above configuration, the following will happen only after recovery is completedafter recovery is completed:

1. If the app database does not exist, it will be created.
2. If the app user does not exist, it will be created.
3. If the app user is not the owner of the app database, ownership will be granted to the app user.
4. If the username value matches the owner value in the secret, the password for the application user (the app user in this case) will be updated

to the password value in the secret.

How recovery works under the hood

You can use the data uploaded to the object storage to bootstrap a new cluster from an existing backup. The operator orchestrates the recovery process
using the barman-cloud-restore tool (for the base backup) and the barman-cloud-wal-restore tool (for WAL files, including parallel
support, if requested).

For details and instructions on the recovery bootstrap method, see Bootstrap from a backup.

ImportantImportant

If you're not familiar with how PostgreSQL PITR works, we suggest that you configure the recovery cluster as the original one when it comes to
.spec.postgresql.parameters . Once the new cluster is restored, you can then change the settings as desired.

The way it works is that the operator injects an init container in the first instance of the new cluster, and the init container starts recovering the backup
from the object storage.

ImportantImportant

The duration of the base backup copy in the new PVC depends on the size of the backup, as well as the speed of both the network and the storage.

When the base backup recovery process is complete, the operator starts the Postgres instance in recovery mode. In this phase, PostgreSQL is up, though
not able to accept connections, and the pod is healthy according to the liveness probe. By way of the restore_command , PostgreSQL starts fetching
WAL files from the archive. You can speed up this phase by setting the maxParallel option and enabling the parallel WAL restore capability.

This phase terminates when PostgreSQL reaches the target, either the end of the WAL or the required target in case of PITR. You can optionally specify a
recoveryTarget to perform a PITR. If left unspecified, the recovery continues up to the latest available WAL on the default target timeline (latest).

Once the recovery is complete, the operator sets the required superuser password into the instance. The new primary instance starts as usual, and the
remaining instances join the cluster as replicas.

The process is transparent for the user and is managed by the instance manager running in the pods.

Restoring into a Cluster with a Backup Section

When restoring a cluster, the manifest may include a plugins section with Barman Cloud plugin pointing to a backup object store resource. This
enables the newly created cluster to begin archiving WAL files and taking backups immediately after recovery—provided backup policies are configured.

Avoid reusing the same ObjectStore configuration for both backup and recovery in the same cluster. If you must, ensure that each cluster uses a
unique serverName to prevent accidental overwrites of backup or WAL archive data.

WarningWarning

EDB Postgres for Kubernetes includes a safety check to prevent a cluster from overwriting existing data in a shared storage bucket. If a conflict is
detected, the cluster remains in the Setting up primary state, and the associated pods will fail with an error. The pod logs will display:
ERROR: WAL archive check failed for server recoveredCluster: Expected empty archive .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 246

https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-PITR-RECOVERY

ImportantImportant

You can bypass this safety check by setting the k8s.enterprisedb.io/skipEmptyWalArchiveCheck annotation to enabled on the
recovered cluster. However, this is strongly discouraged unless you are highly familiar with PostgreSQL's recovery process. Skipping the check
incorrectly can lead to severe data loss. Use with caution and only in expert scenarios.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 247

24 Appendix A - Backup on volume snapshots

ImportantImportant

Please refer to the official Kubernetes documentation for a list of all the supported Container Storage Interface (CSI) drivers that provide
snapshotting capabilities.

EDB Postgres for Kubernetes is one of the first known cases of database operators that directly leverages the Kubernetes native Volume Snapshot API for
both backup and recovery operations, in an entirely declarative way.

About standard Volume Snapshots

Volume snapshotting was first introduced in Kubernetes 1.12 (2018) as alpha, promoted to beta in 1.17 (2019), and moved to GA in 1.20 (2020). It’s now
stable, widely available, and standard, providing 3 custom resource definitions: VolumeSnapshot , VolumeSnapshotContent and
VolumeSnapshotClass .

This Kubernetes feature defines a generic interface for:

the creation of a new volume snapshot, starting from a PVC
the deletion of an existing snapshot
the creation of a new volume from a snapshot

Kubernetes delegates the actual implementation to the underlying CSI drivers (not all of them support volume snapshots). Normally, storage classes that
provide volume snapshotting support incremental and differential block level backup in a transparent way for the applicationincremental and differential block level backup in a transparent way for the application, which can delegate the
complexity and the independent management down the stack, including cross-cluster availability of the snapshots.

Requirements

For Volume Snapshots to work with a EDB Postgres for Kubernetes cluster, you need to ensure that each storage class used to dynamically provision the
PostgreSQL volumes (namely, storage and walStorage sections) support volume snapshots.

Given that instructions vary from storage class to storage class, please refer to the documentation of the specific storage class and related CSI drivers you
have deployed in your Kubernetes system.

Normally, it is the VolumeSnapshotClass that is responsible to ensure that snapshots can be taken from persistent volumes of a given storage class,
and managed as VolumeSnapshot and VolumeSnapshotContent resources.

ImportantImportant

It is your responsibility to verify with the third party vendor that volume snapshots are supported. EDB Postgres for Kubernetes only interacts with
the Kubernetes API on this matter, and we cannot support issues at the storage level for each specific CSI driver.

How to configure Volume Snapshot backups

EDB Postgres for Kubernetes allows you to configure a given Postgres cluster for Volume Snapshot backups through the backup.volumeSnapshot
stanza.

InfoInfo

Please refer to VolumeSnapshotConfiguration in the API reference for a full list of options.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 248

https://kubernetes-csi.github.io/docs/drivers.html
https://kubernetes.io/blog/2018/10/09/introducing-volume-snapshot-alpha-for-kubernetes/
https://kubernetes.io/blog/2019/12/09/kubernetes-1-17-feature-cis-volume-snapshot-beta/
https://kubernetes.io/blog/2020/12/10/kubernetes-1.20-volume-snapshot-moves-to-ga/
https://kubernetes.io/docs/concepts/storage/volume-snapshot-classes/

A generic example with volume snapshots (assuming that PGDATA and WALs share the same storage class) is the following:

As you can see, the backup section contains both the volumeSnapshot stanza (controlling physical base backups on volume snapshots) and the
plugins one (controlling the WAL archive).

InfoInfo

Once you have defined the plugin , you can decide to use both volume snapshot and plugin backup strategies simultaneously to take physical
backups.

The volumeSnapshot.className option allows you to reference the default VolumeSnapshotClass object used for all the storage volumes you
have defined in your PostgreSQL cluster.

InfoInfo

In case you are using a different storage class for PGDATA and WAL files, you can specify a separate VolumeSnapshotClass for that
volume through the walClassName option (which defaults to the same value as className).

Once a cluster is defined for volume snapshot backups, you need to define a ScheduledBackup resource that requests such backups on a periodic
basis.

Hot and cold backups

WarningWarning

As noted in the backup document, a cold snapshot explicitly set to target the primary will result in the primary being fenced for the duration of the
backup, making the cluster read-only during this period. For safety, in a cluster already containing fenced instances, a cold snapshot is rejected.

By default, EDB Postgres for Kubernetes requests an online/hot backup on volume snapshots, using the PostgreSQL defaults of the low-level API for base
backups:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: snapshot-cluster
spec::
 instances:: 3

 storage::
 storageClass:: @STORAGE_CLASS@
 size:: 10Gi
 walStorage::
 storageClass:: @STORAGE_CLASS@
 size:: 10Gi

 backup::
 # Volume snapshot
backups
 volumeSnapshot::
 className:: @VOLUME_SNAPSHOT_CLASS_NAME@

 plugins::
 -- name:: barman-cloud.cloudnative-pg.io
 isWALArchiver:: true
 parameters::
 barmanObjectName:: @OBJECTSTORE_NAME@

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 249

https://www.postgresql.org/docs/current/continuous-archiving.html#BACKUP-LOWLEVEL-BASE-BACKUP

it doesn't request an immediate checkpoint when starting the backup procedure
it waits for the WAL archiver to archive the last segment of the backup when terminating the backup procedure

ImportantImportant

The default values are suitable for most production environments. Hot backups are consistent and can be used to perform snapshot recovery, as
we ensure WAL retention from the start of the backup through a temporary replication slot. However, our recommendation is to rely on cold
backups for that purpose.

You can explicitly change the default behavior through the following options in the .spec.backup.volumeSnapshot stanza of the Cluster
resource:

online : accepting true (default) or false as a value
onlineConfiguration.immediateCheckpoint : whether you want to request an immediate checkpoint before you start the backup

procedure or not; technically, it corresponds to the fast argument you pass to the pg_backup_start / pg_start_backup() function in
PostgreSQL, accepting true (default) or false
onlineConfiguration.waitForArchive : whether you want to wait for the archiver to process the last segment of the backup or not;

technically, it corresponds to the wait_for_archive argument you pass to the pg_backup_stop / pg_stop_backup() function in
PostgreSQL, accepting true (default) or false

If you want to change the default behavior of your Postgres cluster to take cold backups by default, all you need to do is add the online: false option
to your manifest, as follows:

If you are instead requesting an immediate checkpoint as the default behavior, you can add this section:

Overriding the default behavior

You can change the default behavior defined in the cluster resource by setting different values for online and, if needed, onlineConfiguration in
the Backup or ScheduledBackup objects.

For example, in case you want to issue an on-demand cold backup, you can create a Backup object with .spec.online: false :

 #
...
 backup::
 volumeSnapshot::
 online:: false
 #
...

 #
...
 backup::
 volumeSnapshot::
 online:: true
 onlineConfiguration::
 immediateCheckpoint:: true
 #
...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 250

Similarly, for the ScheduledBackup:

Persistence of volume snapshot objects

By default, VolumeSnapshot objects created by EDB Postgres for Kubernetes are retained after deleting the Backup object that originated them, or
the Cluster they refer to. Such behavior is controlled by the .spec.backup.volumeSnapshot.snapshotOwnerReference option which
accepts the following values:

none : no ownership is set, meaning that VolumeSnapshot objects persist after the Backup and/or the Cluster resources are removed
backup : the VolumeSnapshot object is owned by the Backup resource that originated it, and when the backup object is removed, the

volume snapshot is also removed
cluster : the VolumeSnapshot object is owned by the Cluster resource that is backed up, and when the Postgres cluster is removed, the

volume snapshot is also removed

In case a VolumeSnapshot is deleted, the deletionPolicy specified in the VolumeSnapshotContent is evaluated:

if set to Retain , the VolumeSnapshotContent object is kept
if set to Delete , the VolumeSnapshotContent object is removed as well

WarningWarning

VolumeSnapshotContent objects do not keep all the information regarding the backup and the cluster they refer to (like the annotations
and labels that are contained in the VolumeSnapshot object). Although possible, restoring from just this kind of object might not be
straightforward. For this reason, our recommendation is to always backup the VolumeSnapshot definitions, even using a Kubernetes level
data protection solution.

The value in VolumeSnapshotContent is determined by the deletionPolicy set in the corresponding VolumeSnapshotClass definition,
which is referenced in the .spec.backup.volumeSnapshot.className option.

Please refer to the Kubernetes documentation on Volume Snapshot Classes for details on this standard behavior.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Backup
metadata::
 name:: snapshot-cluster-cold-backup-example
spec::
 cluster::
 name:: snapshot-cluster
 method::
volumeSnapshot
 online:: false

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: ScheduledBackup
metadata::
 name:: snapshot-cluster-cold-backup-example
spec::
 schedule:: "0 0 0 * *
*"
 backupOwnerReference:: self
 cluster::
 name:: snapshot-cluster
 method::
volumeSnapshot
 online:: false

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 251

https://kubernetes.io/docs/concepts/storage/volume-snapshot-classes/

Backup Volume Snapshot Deadlines

EDB Postgres for Kubernetes supports backups using the volume snapshot method. In some environments, volume snapshots may encounter temporary
issues that can be retried.

The backup.k8s.enterprisedb.io/volumeSnapshotDeadline annotation defines how long EDB Postgres for Kubernetes should continue
retrying recoverable errors before marking the backup as failed.

You can add the backup.k8s.enterprisedb.io/volumeSnapshotDeadline annotation to both Backup and ScheduledBackup
resources. For ScheduledBackup resources, this annotation is automatically inherited by any Backup resources created from the schedule.

If not specified, the default retry deadline is 10 minutes10 minutes.

Error Handling

When a retryable error occurs during a volume snapshot operation:

1. EDB Postgres for Kubernetes records the time of the first error.
2. The system retries the operation every 10 seconds10 seconds.
3. If the error persists beyond the specified deadline (or the default 10 minutes), the backup is marked as failedfailed.

Retryable Errors

EDB Postgres for Kubernetes treats the following types of errors as retryable:

Server timeout errorsServer timeout errors (HTTP 408, 429, 500, 502, 503, 504)
ConflictsConflicts (optimistic locking errors)
Internal errorsInternal errors
Context deadline exceeded errorsContext deadline exceeded errors
Timeout errors from the CSI snapshot controllerTimeout errors from the CSI snapshot controller

Examples

You can add the annotation to a ScheduledBackup resource as follows:

When you define a ScheduledBackup with the annotation, any Backup resources created from this schedule automatically inherit the specified
timeout value.

In the following example, all backups created from the schedule will have a 30-minute timeout for retrying recoverable snapshot errors.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: ScheduledBackup
metadata::
 name:: daily-backup-
schedule
 annotations::
 backup.k8s.enterprisedb.io/volumeSnapshotDeadline:: "20"
spec::
 schedule:: "0 0 * *
*"
 backupOwnerReference:: self
 method::
volumeSnapshot
 # other
configuration...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 252

Alternatively, you can add the annotation directly to a Backup Resource:

Example of Volume Snapshot Backup

The following example shows how to configure volume snapshot base backups on an EKS cluster on AWS using the ebs-sc storage class and the csi-
aws-vsc volume snapshot class.

ImportantImportant

If you are interested in testing the example, please read "Volume Snapshots" for the Amazon Elastic Block Store (EBS) CSI driver for detailed
instructions on the installation process for the storage class and the snapshot class.

The following manifest creates a Cluster that is ready to be used for volume snapshots and that stores the WAL archive in a S3 bucket via IAM role for
the Service Account (IRSA, see AWS S3):

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: ScheduledBackup
metadata::
 name:: weekly-backup
 annotations::
 backup.k8s.enterprisedb.io/volumeSnapshotDeadline:: "30"
spec::
 schedule:: "0 0 * * 0" # Weekly backup on
Sunday
 method::
volumeSnapshot
 cluster::
 name:: my-postgresql-
cluster

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Backup
metadata::
 name:: my-
backup
 annotations::
 backup.k8s.enterprisedb.io/volumeSnapshotDeadline:: "15"
spec::
 method::
volumeSnapshot
 # other backup
configuration...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 253

https://github.com/kubernetes-sigs/aws-ebs-csi-driver/tree/master/examples/kubernetes/snapshot

The last resource defines daily volume snapshot backups at midnight, requesting one immediately after the cluster is created.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: hendrix
spec::
 instances:: 3

 storage::
 storageClass:: ebs-sc
 size:: 10Gi
 walStorage::
 storageClass:: ebs-sc
 size:: 10Gi

 backup::
 volumeSnapshot::
 className:: csi-aws-vsc

 plugins::
 -- name:: barman-cloud.cloudnative-pg.io
 isWALArchiver:: true
 parameters::
 barmanObjectName:: @OBJECTSTORE_NAME@

 serviceAccountTemplate::
 metadata::
 annotations::
 eks.amazonaws.com/role-arn:: "@ARN@"

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: ScheduledBackup
metadata::
 name:: hendrix-vs-
backup
spec::
 cluster::
 name:: hendrix
 method::
volumeSnapshot
 schedule:: '0 0 0 * *
*'
 backupOwnerReference:: cluster
 immediate:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 254

25 Appendix B - Backup on object stores

WarningWarning

As of EDB Postgres for Kubernetes 1.26, native Barman Cloud support is deprecatednative Barman Cloud support is deprecated in favor of the Barman Cloud PluginBarman Cloud Plugin. This page has been
moved to the appendix for reference purposes. While the native integration remains functional for now, we strongly recommend beginning a
gradual migration to the plugin-based interface after appropriate testing. For guidance, see Migrating from Built-in EDB Postgres for Kubernetes
Backup.

EDB Postgres for Kubernetes natively supports online/hot backuponline/hot backup of PostgreSQL clusters through continuous physical backup and WAL archiving on an
object store. This means that the database is always up (no downtime required) and that Point In Time Recovery is available.

The operator can orchestrate a continuous backup infrastructure that is based on the Barman Cloud tool. Instead of using the classical architecture with a
Barman server, which backs up many PostgreSQL instances, the operator relies on the barman-cloud-wal-archive , barman-cloud-check-
wal-archive , barman-cloud-backup , barman-cloud-backup-list , and barman-cloud-backup-delete tools. As a result, base
backups will be tarballs. Both base backups and WAL files can be compressed and encrypted.

For this, it is required to use an image with barman-cli-cloud included. You can use the image quay.io/enterprisedb/postgresql for this
scope, as it is composed of a community PostgreSQL image and the latest barman-cli-cloud package.

ImportantImportant

Always ensure that you are running the latest version of the operands in your system to take advantage of the improvements introduced in
Barman cloud (as well as improve the security aspects of your cluster).

A backup is performed from a primary or a designated primary instance in a Cluster (please refer to replica clusters for more information about
designated primary instances), or alternatively on a standby.

Common object stores

If you are looking for a specific object store such as AWS S3, Microsoft Azure Blob Storage, Google Cloud Storage, or a compatible provider, please refer to
Appendix C - Common object stores for backups.

WAL archiving

WAL archiving is the process that feeds a WAL archive in EDB Postgres for Kubernetes.

The WAL archive is defined in the .spec.backup.barmanObjectStore stanza of a Cluster resource.

InfoInfo

Please refer to BarmanObjectStoreConfiguration in the barman-cloud API for a full list of options.

If required, you can choose to compress WAL files as soon as they are uploaded and/or encrypt them:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 255

https://cloudnative-pg.io/plugin-barman-cloud/docs/migration/
https://pgbarman.org/
https://pkg.go.dev/github.com/cloudnative-pg/barman-cloud/pkg/api#BarmanObjectStoreConfiguration

You can configure the encryption directly in your bucket, and the operator will use it unless you override it in the cluster configuration.

PostgreSQL implements a sequential archiving scheme, where the archive_command will be executed sequentially for every WAL segment to be
archived.

ImportantImportant

By default, EDB Postgres for Kubernetes sets archive_timeout to 5min , ensuring that WAL files, even in case of low workloads, are
closed and archived at least every 5 minutes, providing a deterministic time-based value for your Recovery Point Objective (RPO). Even though
you change the value of the archive_timeout setting in the PostgreSQL configuration, our experience suggests that the default value set by
the operator is suitable for most use cases.

When the bandwidth between the PostgreSQL instance and the object store allows archiving more than one WAL file in parallel, you can use the parallel
WAL archiving feature of the instance manager like in the following example:

In the previous example, the instance manager optimizes the WAL archiving process by archiving in parallel at most eight ready WALs, including the one
requested by PostgreSQL.

When PostgreSQL will request the archiving of a WAL that has already been archived by the instance manager as an optimization, that archival request will
be just dismissed with a positive status.

Retention policies

EDB Postgres for Kubernetes can manage the automated deletion of backup files from the backup object store, using retention policiesretention policies based on the
recovery window.

Internally, the retention policy feature uses barman-cloud-backup-delete with --retention-policy “RECOVERY WINDOW OF {{
retention policy value }} {{ retention policy unit }}” .

For example, you can define your backups with a retention policy of 30 days as follows:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 [[...]]
 wal::
 compression:: gzip
 encryption::
AES256

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 [[...]]
 wal::
 compression:: gzip
 maxParallel:: 8
 encryption::
AES256

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 256

https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT

There's more ...There's more ...

The recovery window retention policyrecovery window retention policy is focused on the concept of Point of Recoverability (PoR), a moving point in time determined by
current time - recovery window . The first valid backup is the first available backup before PoR (in reverse chronological order). EDB

Postgres for Kubernetes must ensure that we can recover the cluster at any point in time between PoR and the latest successfully archived WAL
file, starting from the first valid backup. Base backups that are older than the first valid backup will be marked as obsolete and permanently
removed after the next backup is completed.

Compression algorithms

EDB Postgres for Kubernetes by default archives backups and WAL files in an uncompressed fashion. However, it also supports the following compression
algorithms via barman-cloud-backup (for backups) and barman-cloud-wal-archive (for WAL files):

bzip2
gzip
lz4
snappy
xz
zstd

The compression settings for backups and WALs are independent. See the DataBackupConfiguration and WALBackupConfiguration sections in the barman-
cloud API reference.

It is important to note that archival time, restore time, and size change between the algorithms, so the compression algorithm should be chosen according
to your use case.

The Barman team has performed an evaluation of the performance of the supported algorithms for Barman Cloud. The following table summarizes a
scenario where a backup is taken on a local MinIO deployment. The Barman GitHub project includes a deeper analysis.

Compression Backup Time (ms) Restore Time (ms) Uncompressed size (MB) Compressed size (MB) Approx ratio

None 10927 7553 395 395 1:1

bzip2 25404 13886 395 67 5.9:1

gzip 116281 3077 395 91 4.3:1

snappy 8134 8341 395 166 2.4:1

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "<destination path
here>"
 s3Credentials::
 accessKeyId::
 name:: aws-creds
 key:: ACCESS_KEY_ID
 secretAccessKey::
 name:: aws-creds
 key:: ACCESS_SECRET_KEY
 retentionPolicy:: "30d"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 257

https://pkg.go.dev/github.com/cloudnative-pg/barman-cloud/pkg/api#DataBackupConfiguration
https://pkg.go.dev/github.com/cloudnative-pg/barman-cloud/pkg/api#WalBackupConfiguration
https://github.com/EnterpriseDB/barman/issues/344#issuecomment-992547396

Tagging of backup objects

Barman 2.18 introduces support for tagging backup resources when saving them in object stores via barman-cloud-backup and barman-cloud-
wal-archive . As a result, if your PostgreSQL container image includes Barman with version 2.18 or higher, EDB Postgres for Kubernetes enables you to
specify tags as key-value pairs for backup objects, namely base backups, WAL files and history files.

You can use two properties in the .spec.backup.barmanObjectStore definition:

tags : key-value pair tags to be added to backup objects and archived WAL file in the backup object store
historyTags : key-value pair tags to be added to archived history files in the backup object store

The excerpt of a YAML manifest below provides an example of usage of this feature:

Extra options for the backup and WAL commands

You can append additional options to the barman-cloud-backup and barman-cloud-wal-archive commands by using the
additionalCommandArgs property in the .spec.backup.barmanObjectStore.data and .spec.backup.barmanObjectStore.wal

sections respectively. These properties are lists of strings that will be appended to the barman-cloud-backup and barman-cloud-wal-archive
commands.

For example, you can use the --read-timeout=60 to customize the connection reading timeout.

For additional options supported by barman-cloud-backup and barman-cloud-wal-archive commands you can refer to the official barman
documentation here.

If an option provided in additionalCommandArgs is already present in the declared options in its section
(.spec.backup.barmanObjectStore.data or .spec.backup.barmanObjectStore.wal), the extra option will be ignored.

The following is an example of how to use this property:

For backups:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 [[...]]
 tags::
 backupRetentionPolicy:: "expire"
 historyTags::
 backupRetentionPolicy:: "keep"

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 [[...]]
 data::
 additionalCommandArgs::
 -- "--min-chunk-size=5MB"
 -- "--read-timeout=60"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 258

https://www.pgbarman.org/documentation/

For WAL files:

Recovery from an object store

You can recover from a backup created by Barman Cloud and stored on a supported object store. After you define the external cluster, including all the
required configuration in the barmanObjectStore section, you need to reference it in the .spec.recovery.source option.

This example defines a recovery object store in a blob container in Azure:

The previous example assumes that the application database and its owning user are named app by default. If the PostgreSQL cluster being restored uses
different names, you must specify these names before exiting the recovery phase, as documented in "Configure the application database".

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 [[...]]
 wal::
 additionalCommandArgs::
 -- "--max-concurrency=1"
 -- "--read-timeout=60"

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
restore
spec::
 [[...]]

 superuserSecret::
 name:: superuser-secret

 bootstrap::
 recovery::
 source:: clusterBackup

 externalClusters::
 -- name:: clusterBackup
 barmanObjectStore::
 destinationPath:: https://STORAGEACCOUNTNAME.blob.core.windows.net/CONTAINERNAME/
 azureCredentials::
 storageAccount::
 name:: recovery-object-store-secret
 key:: storage_account_name
 storageKey::
 name:: recovery-object-store-secret
 key::
storage_account_key
 wal::
 maxParallel:: 8

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 259

ImportantImportant

By default, the recovery method strictly uses the name of the cluster in the externalClusters section as the name of the main folder
of the backup data within the object store. This name is normally reserved for the name of the server. You can specify a different folder name
using the barmanObjectStore.serverName property.

NoteNote

This example takes advantage of the parallel WAL restore feature, dedicating up to 8 jobs to concurrently fetch the required WAL files from the
archive. This feature can appreciably reduce the recovery time. Make sure that you plan ahead for this scenario and correctly tune the value of
this parameter for your environment. It will make a difference when you need it, and you will.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 260

26 WAL archiving

Write-Ahead Log (WAL) archiving in EDB Postgres for Kubernetes is the process of continuously shipping WAL files to a designated object store from the
PostgreSQL primary. These archives are essential for enabling Point-In-Time Recovery (PITR) and are a foundational component for both object store and
volume snapshot-based backup strategies.

Plugin-Based Architecture

EDB Postgres for Kubernetes supports WAL archiving through a plugin-based mechanismplugin-based mechanism, defined via the spec.pluginConfiguration section of
the Cluster resource.

Only one plugin at a timeone plugin at a time can be responsible for WAL archiving. This is configured by setting the isWALArchiver field to true within the plugin
configuration.

Supported Plugins

Currently, the Barman Cloud PluginBarman Cloud Plugin is the only officially supported WAL archiving plugin maintained by the EDB Postgres for Kubernetes Community. For
full documentation, configuration options, and best practices, see the Barman Cloud Plugin documentation.

Deprecation Notice: Native Barman Cloud

EDB Postgres for Kubernetes still supports WAL archiving natively through the .spec.backup.barmanObjectStore field. While still functional, thisthis
interface is deprecatedinterface is deprecated and will be removed in a future release.

ImportantImportant

All new deployments are strongly encouraged to adopt the plugin-based architecture, which offers a more flexible and maintainable approach.

If you are currently using the native .spec.backup.barmanObjectStore approach, refer to the official guide for a smooth transition: Migrating
from Built-in EDB Postgres for Kubernetes Backup.

About the archive timeout

By default, EDB Postgres for Kubernetes sets archive_timeout to 5min , ensuring that WAL files, even in case of low workloads, are closed and
archived at least every 5 minutes, providing a deterministic time-based value for your Recovery Point Objective (RPO).

Even though you change the value of the archive_timeout setting in the PostgreSQL configuration, our experience suggests that the default value set
by the operator is suitable for most use cases.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 261

https://cloudnative-pg.io/plugin-barman-cloud/docs/intro/
https://cloudnative-pg.io/plugin-barman-cloud/docs/migration/
https://www.postgresql.org/docs/current/runtime-config-wal.html#GUC-ARCHIVE-TIMEOUT

27 PostgreSQL Role Management

From its inception, EDB Postgres for Kubernetes has managed the creation of specific roles required in PostgreSQL instances:

some reserved users, such as the postgres superuser, streaming_replica and cnp_pooler_pgbouncer (when the PgBouncer
Pooler is used)

The application user, set as the low-privilege owner of the application database

This process is described in the "Bootstrap" section.

With the managed stanza in the cluster spec, EDB Postgres for Kubernetes now provides full lifecycle management for roles specified in
.spec.managed.roles .

This feature enables declarative management of existing roles, as well as the creation of new roles if they are not already present in the database. Role
creation will occur after the database bootstrapping is complete.

An example manifest for a cluster with declarative role management can be found in the file cluster-example-with-roles.yaml .

Here is an excerpt from that file:

The role specification in .spec.managed.roles adheres to the PostgreSQL structure and naming conventions. Please refer to the API reference for the
full list of attributes you can define for each role.

A few points are worth noting:

1. The ensure attribute is notnot part of PostgreSQL. It enables declarative role management to create and remove roles. The two possible values are
present (the default) and absent .

2. The inherit attribute is true by default, following PostgreSQL conventions.
3. The connectionLimit attribute defaults to -1, in line with PostgreSQL conventions.
4. Role membership with inRoles defaults to no memberships.

Declarative role management ensures that PostgreSQL instances align with the spec. If a user modifies role attributes directly in the database, the EDB
Postgres for Kubernetes operator will revert those changes during the next reconciliation cycle.

Password management

The declarative role management feature includes reconciling of role passwords. Passwords are managed in fundamentally different ways in the
Kubernetes world and in PostgreSQL, and as a result there are a few things to note.

Managed role configurations may optionally specify the name of a SecretSecret where the username and password are stored (encoded in Base64 as is usual in
Kubernetes). For example:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
spec::
 managed::
 roles::
 -- name:: dante
 ensure:: present
 comment:: Dante Alighieri
 login:: true
 superuser:: false
 inRoles::
 -- pg_monitor
 -- pg_signal_backend

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 262

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-roles.yaml
https://www.postgresql.org/docs/current/sql-createrole.html

This would assume the existence of a Secret called cluster-example-dante , containing a username and password. The username should match the
role we are setting the password for. For example, :

If there is no passwordSecret specified for a role, the instance manager will not try to CREATE / ALTER the role with a password. This keeps with
PostgreSQL conventions, where ALTER will not update passwords unless directed to with WITH PASSWORD .

If a role was initially created with a password, and we would like to set the password to NULL in PostgreSQL, this necessitates being explicit on the part of
the user of EDB Postgres for Kubernetes. To distinguish "no password provided in spec" from "set the password to NULL", the field DisablePassword
should be used.

Imagine we decided we would like to have no password on the dante role in the database. In such case we would specify the following:

NOTE: it is considered an error to set both passwordSecret and disablePassword on a given role. This configuration will be rejected by the
validation webhook.

Password expiry, VALID UNTIL

The VALID UNTIL role attribute in PostgreSQL controls password expiry. Roles created without VALID UNTIL specified get NULL by default in
PostgreSQL, meaning that their password will never expire.

PostgreSQL uses a timestamp type for VALID UNTIL , which includes support for the value 'infinity' indicating that the password never expires.
Please see the PostgreSQL documentation for reference.

With declarative role management, the validUntil attribute for managed roles controls password expiry. validUntil can only take:

 managed::
 roles::
 -- name:: dante
 ensure:: present
 [[… snipped
…]]
 passwordSecret::
 name:: cluster-example-
dante

apiVersion:: v1
data::
 username::
ZGFudGU=
 password::
ZGFudGU=
kind::
Secret
metadata::
 name:: cluster-example-
dante
 labels::
 k8s.enterprisedb.io/reload:: "true"
type:: kubernetes.io/basic-auth

 managed::
 roles::
 -- name:: dante
 ensure:: present
 [[… snipped
…]]
 disablePassword:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 263

https://www.postgresql.org/docs/current/datatype-datetime.html

a Kubernetes timestamp, or
be omitted (defaulting to null)

In the first case, the given validUntil timestamp will be set in the database as the VALID UNTIL attribute of the role.

In the second case (omitted validUntil) the operator will ensure password never expires, mirroring the behavior of PostgreSQL. Specifically:

in case of new role, it will omit the VALID UNTIL clause in the role creation statement
in case of existing role, it will set VALID UNTIL to infinity if VALID UNTIL was not set to NULL in the database (this is due to
PostgreSQL not allowing VALID UNTIL NULL in the ALTER ROLE SQL statement)

WarningWarning

New roles created without passwordSecret will have a NULL password inside PostgreSQL.

Password hashed

You can also provide pre-encrypted passwords by specifying the password in MD5/SCRAM-SHA-256 hash format:

Unrealizable role configurations

In PostgreSQL, in some cases, commands cannot be honored by the database and will be rejected. Please refer to the PostgreSQL documentation on error
codes for details.

Role operations can produce such fundamental errors. Two examples:

We ask PostgreSQL to create the role petrarca as a member of the role (group) poets , but poets does not exist.
We ask PostgreSQL to drop the role dante , but the role dante is the owner of the database inferno .

These fundamental errors cannot be fixed by the database, nor the EDB Postgres for Kubernetes operator, without clarification from the human
administrator. The two examples above could be fixed by creating the role poets or dropping the database inferno respectively, but they might have
originated due to human error, and in such case, the "fix" proposed might be the wrong thing to do.

EDB Postgres for Kubernetes will record when such fundamental errors occur, and will display them in the cluster Status. Which segues into…

kind::
Secret
type:: kubernetes.io/basic-auth
metadata::
 name:: cluster-example-
cavalcanti
 labels::
 k8s.enterprisedb.io/reload:: "true"
apiVersion:: v1
stringData::
 username:: cavalcanti
 password:: SCRAM-SHA-256$<iteration count>:<salt>$<StoredKey>:
<ServerKey>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 264

https://www.postgresql.org/docs/current/errcodes-appendix.html

Status of managed roles

The Cluster status includes a section for the managed roles' status, as shown below:

Note the special sub-section cannotReconcile for operations the database (and EDB Postgres for Kubernetes) cannot honor, and which require
human intervention.

This section covers roles reserved for operator use and those that are notnot under declarative management, providing a comprehensive view of the roles in
the database instances.

The kubectl plugin also shows the status of managed roles in its status sub-command:

ImportantImportant

In terms of backward compatibility, declarative role management is designed to ignore roles that exist in the database but are not included in the
spec. The lifecycle of these roles will continue to be managed within PostgreSQL, allowing EDB Postgres for Kubernetes users to adopt this
feature at their convenience.

status::
 [[…snipped…]]
 managedRolesStatus::
 byStatus::
 not-managed::
 --
app
 pending-reconciliation::
 -- dante
 --
petrarca
 reconciled::
 -- ariosto
 reserved::
 --
postgres
 -- streaming_replica
 cannotReconcile::
 dante::
 -- 'could not perform DELETE on role dante: owner of database
inferno'
 petrarca::
 -- 'could not perform UPDATE_MEMBERSHIPS on role petrarca: role "poets" does not
exist'

Managed roles
status
Status Roles
------ ----
-
pending-reconciliation
petrarca
reconciled app,dante
reserved
postgres,streaming_replica

Irreconcilable roles
Role
Errors
---- -----
-
petrarca could not perform UPDATE_MEMBERSHIPS on role petrarca: role "poets" does not
exist

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 265

28 Storage

Storage is the most critical component in a database workload. Storage must always be available, scale, perform well, and guarantee consistency and
durability. The same expectations and requirements that apply to traditional environments, such as virtual machines and bare metal, are also valid in
container contexts managed by Kubernetes.

ImportantImportant

When it comes to dynamically provisioned storage, Kubernetes has its own specifics. These include storage classes, persistent volumes, and
Persistent Volume Claims (PVCs). You need to own these concepts, on top of all the valuable knowledge you've built over the years in terms of
storage for database workloads on VMs and physical servers.

There are two primary methods of access to storage:

NetworkNetwork – Either directly or indirectly. (Think of an NFS volume locally mounted on a host running Kubernetes.)
LocalLocal – Directly attached to the node where a pod is running. This also includes directly attached disks on bare metal installations of Kubernetes.

Network storage, which is the most common usage pattern in Kubernetes, presents the same issues of throughput and latency that you can experience in a
traditional environment. These issues can be accentuated in a shared environment, where I/O contention with several applications increases the variability
of performance results.

Local storage enables shared-nothing architectures, which is more suitable for high transactional and very large database (VLDB) workloads, as it
guarantees higher and more predictable performance.

WarningWarning

Before you deploy a PostgreSQL cluster with EDB Postgres for Kubernetes, ensure that the storage you're using is recommended for database
workloads. We recommend clearly setting performance expectations by first benchmarking the storage using tools such as fio and then the
database using pgbench.

InfoInfo

EDB Postgres for Kubernetes doesn't use StatefulSet for managing data persistence. Rather, it manages PVCs directly. If you want to know
more, see Custom pod controller.

Backup and recovery

Since EDB Postgres for Kubernetes supports volume snapshots for both backup and recovery, we recommend that you also consider this aspect when you
choose your storage solution, especially if you manage very large databases.

ImportantImportant

See the Kubernetes documentation for a list of all the supported container storage interface (CSI) drivers that provide snapshot capabilities.

Benchmarking EDB Postgres for Kubernetes

Before deploying the database in production, we recommend that you benchmark EDB Postgres for Kubernetes in a controlled Kubernetes environment.
Follow the guidelines in Benchmarking.

Briefly, we recommend operating at two levels:

Measuring the performance of the underlying storage using fio, with relevant metrics for database workloads such as throughput for sequential
reads, sequential writes, random reads, and random writes
Measuring the performance of the database using pgbench, the default benchmarking tool distributed with PostgreSQL

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 266

https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.postgresql.org/docs/current/pgbench.html
https://kubernetes-csi.github.io/docs/drivers.html

ImportantImportant

You must measure both the storage and database performance before putting the database into production. These results are extremely valuable
not just in the planning phase (for example, capacity planning). They are also valuable in the production lifecycle, particularly in emergency
situations when you don't have time to run this kind of test. Databases change and evolve over time, and so does the distribution of data,
potentially affecting performance. Knowing the theoretical maximum throughput of sequential reads or writes is extremely useful in those
situations. This is true especially in shared-nothing contexts, where results don't vary due to the influence of external workloads.

Know your system: benchmark it.

Encryption at rest

Encryption at rest is possible with EDB Postgres for Kubernetes. The operator delegates that to the underlying storage class. See the storage class for
information about this important security feature.

Persistent Volume Claim (PVC)

The operator creates a PVC for each PostgreSQL instance, with the goal of storing the PGDATA . It then mounts it into each pod.

Additionally, it supports creating clusters with:

A separate PVC on which to store PostgreSQL WAL, as explained in Volume for WAL
Additional separate volumes reserved for PostgreSQL tablespaces, as explained in Tablespaces

In EDB Postgres for Kubernetes, the volumes attached to a single PostgreSQL instance are defined as a PVC group.

Configuration via a storage class

ImportantImportant

EDB Postgres for Kubernetes was designed to work interchangeably with all storage classes. As usual, we recommend properly benchmarking
the storage class in a controlled environment before deploying to production.

The easiest way to configure the storage for a PostgreSQL class is to request storage of a certain size, like in the following example:

Using the previous configuration, the generated PVCs are satisfied by the default storage class. If the target Kubernetes cluster has no default storage
class, or even if you need your PVCs to be satisfied by a known storage class, you can set it into the custom resource:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgresql-storage-
class
spec::
 instances:: 3
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 267

Configuration via a PVC template

To further customize the generated PVCs, you can provide a PVC template inside the custom resource, like in the following example:

Volume for WAL

By default, PostgreSQL stores all its data in the so-called PGDATA (a directory). One of the core directories inside PGDATA is pg_wal , which contains
the log of transactional changes that occurred in the database, in the form of segment files. (pg_wal is historically known as pg_xlog in PostgreSQL.)

InfoInfo

Normally, each segment is 16MB in size, but you can configure the size using the walSegmentSize option. This option is applied at cluster
initialization time, as described in Bootstrap an empty cluster.

In most cases, having pg_wal on the same volume where PGDATA resides is fine. However, having WALs stored in a separate volume has a few benefits:

I/O performanceI/O performance – By storing WAL files on different storage from PGDATA , PostgreSQL can exploit parallel I/O for WAL operations (normally
sequential writes) and for data files (tables and indexes for example), thus improving vertical scalability.

More reliabilityMore reliability – By reserving dedicated disk space to WAL files, you can be sure that exhausting space on the PGDATA volume never interferes
with WAL writing. This behavior ensures that your PostgreSQL primary is correctly shut down.

Finer controlFiner control – You can define the amount of space dedicated to both PGDATA and pg_wal , fine tune WAL configuration and checkpoints, and

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgresql-storage-
class
spec::
 instances:: 3
 storage::
 storageClass::
standard
 size::
1Gi

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgresql-pvc-
template
spec::
 instances:: 3

 storage::
 pvcTemplate::
 accessModes::
 -- ReadWriteOnce
 resources::
 requests::
 storage::
1Gi
 storageClassName::
standard
 volumeMode:: Filesystem

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 268

Finer controlFiner control – You can define the amount of space dedicated to both PGDATA and pg_wal , fine tune WAL configuration and checkpoints, and
even use a different storage class for cost optimization.

Better I/O monitoringBetter I/O monitoring – You can constantly monitor the load and disk usage on both PGDATA and pg_wal . You can also set alerts that notify you
in case, for example, PGDATA requires resizing.

Write-Ahead Log (WAL)Write-Ahead Log (WAL)

See Reliability and the Write-Ahead Log in the PostgreSQL documentation for more information.

You can add a separate volume for WAL using the .spec.walStorage option. It follows the same rules described for the storage field and
provisions a dedicated PVC. For example:

ImportantImportant

Removing walStorage isn't supported. Once added, a separate volume for WALs can't be removed from an existing Postgres cluster.

Volumes for tablespaces

EDB Postgres for Kubernetes supports declarative tablespaces. You can add one or more volumes, each dedicated to a single PostgreSQL tablespace. See
Tablespaces for details.

Volume expansion

Kubernetes exposes an API allowing expanding PVCs that's enabled by default. However, it needs to be supported by the underlying StorageClass .

To check if a certain StorageClass supports volume expansion, you can read the allowVolumeExpansion field for your storage class:

$ kubectl get storageclass -o jsonpath='{$.allowVolumeExpansion}' premium-storage
true

Using the volume expansion Kubernetes feature

Given the storage class supports volume expansion, you can change the size requirement of the Cluster , and the operator applies the change to every
PVC.

If the StorageClass supports online volume resizing, the change is immediately applied to the pods. If the underlying storage class doesn't support
that, you must delete the pod to trigger the resize.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: separate-pgwal-volume
spec::
 instances:: 3
 storage::
 size::
1Gi
 walStorage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 269

https://www.postgresql.org/docs/current/wal-configuration.html
https://www.postgresql.org/docs/current/wal.html
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#expanding-persistent-volumes-claims
https://kubernetes.io/docs/concepts/storage/persistent-volumes/#resizing-an-in-use-persistentvolumeclaim

The best way to proceed is to delete one pod at a time, starting from replicas and waiting for each pod to be back up.

Re-creating storage

If the storage class doesn't support volume expansion, you can still regenerate your cluster on different PVCs. Allocate new PVCs with increased storage
and then move the database there. This operation is feasible only when the cluster contains more than one node.

While you do that, you need to prevent the operator from changing the existing PVC by disabling the resizeInUseVolumes flag, like in the following
example:

To move the entire cluster to a different storage area, you need to re-create all the PVCs and all the pods. Suppose you have a cluster with three replicas,
like in the following example:

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
cluster-example-1 1/1 Running 0 2m37s
cluster-example-2 1/1 Running 0 2m22s
cluster-example-3 1/1 Running 0 2m10s

To re-create the cluster using different PVCs, you can edit the cluster definition to disable resizeInUseVolumes . Then re-create every instance in a
different PVC.

For example, re-create the storage for cluster-example-3 :

$ kubectl delete pvc/cluster-example-3 pod/cluster-example-3

ImportantImportant

If you created a dedicated WAL volume, both PVCs must be deleted during this process. The same procedure applies if you want to regenerate the
WAL volume PVC. You can do this by also disabling resizeInUseVolumes for the .spec.walStorage section.

For example, if a PVC dedicated to WAL storage is present:

$ kubectl delete pvc/cluster-example-3 pvc/cluster-example-3-wal pod/cluster-example-3

Having done that, the operator orchestrates creating another replica with a resized PVC:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgresql-pvc-
template
spec::
 instances:: 3

 storage::
 storageClass::
standard
 size::
1Gi
 resizeInUseVolumes:: False

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 270

$ kubectl get pods
NAME READY STATUS RESTARTS AGE
cluster-example-1 1/1 Running 0 5m58s
cluster-example-2 1/1 Running 0 5m43s
cluster-example-4-join-v2 0/1 Completed 0 17s
cluster-example-4 1/1 Running 0 10s

Static provisioning of persistent volumes

EDB Postgres for Kubernetes was designed to work with dynamic volume provisioning. This capability allows storage volumes to be created on demand
when requested by users by way of storage classes and PVC templates. See Re-creating storage.

However, in some cases, Kubernetes administrators prefer to manually create storage volumes and then create the related PersistentVolume objects
for their representation inside the Kubernetes cluster. This is also known as pre-provisioning of volumes.

ImportantImportant

We recommend that you avoid pre-provisioning volumes, as it has an effect on the high availability and self-healing capabilities of the operator. It
breaks the fully declarative model on which EDB Postgres for Kubernetes was built.

To use a pre-provisioned volume in EDB Postgres for Kubernetes:

1. Manually create the volume outside Kubernetes.
2. Create the PersistentVolume object to match this volume using the correct parameters as required by the actual CSI driver (that is,

volumeHandle , fsType , storageClassName , and so on).
3. Create the Postgres Cluster using, for each storage section, a coherent pvcTemplate section that can help Kubernetes match the

PersistentVolume and enable EDB Postgres for Kubernetes to create the needed PersistentVolumeClaim .

WarningWarning

With static provisioning, it's your responsibility to ensure that Postgres pods can be correctly scheduled by Kubernetes where a pre-provisioned
volume exists. (The scheduling configuration is based on the affinity rules of your cluster.) Make sure you check for any pods stuck in Pending
after you deploy the cluster. If the condition persists, investigate why it's happening.

Block storage considerations (Ceph/Longhorn)

Most block storage solutions in Kubernetes, such as Longhorn and Ceph, recommend having multiple replicas of a volume to enhance resiliency. This
approach works well for workloads that lack built-in resiliency.

However, EDB Postgres for Kubernetes integrates this resiliency directly into the Postgres Cluster through the number of instances and the persistent
volumes attached to them, as explained in "Synchronizing the state".

As a result, defining additional replicas at the storage level can lead to write amplification, unnecessarily increasing disk I/O and space usage.

For EDB Postgres for Kubernetes usage, consider reducing the number of replicas at the block storage level to one, while ensuring that no single point of
failure (SPoF) exists at the storage level for the entire Cluster resource. This typically means ensuring that a single storage host—and ultimately, a
physical disk—does not host blocks from different instances of the same Cluster , in alignment with the broader shared-nothing architecture principle.

In Longhorn, you can mitigate this risk by enabling strict-local data locality when creating a custom storage class. Detailed instructions for creating a
volume with strict-local data locality are available here. This setting ensures that a pod’s data volume resides on the same node as the pod itself.

Additionally, your Postgres Cluster should have pod anti-affinity rules in place to ensure that the operator deploys pods across different nodes,
allowing Longhorn to place the data volumes on the corresponding hosts. If needed, you can manually relocate volumes in Longhorn by temporarily setting
the volume replica count to 2, reducing it afterward, and then removing the old replica. If a host becomes corrupted, you can use the cnp plugin to destroy
the affected instance. EDB Postgres for Kubernetes will then recreate the instance on another host and replicate the data.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 271

https://longhorn.io/docs/1.7.0/high-availability/data-locality/

In Ceph, this can be configured through CRUSH rules. The documentation for configuring CRUSH rules is available here. These rules aim to ensure one
volume per pod per node. You can also relocate volumes by importing them into a different pool.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 272

https://rook.io/docs/rook/latest-release/CRDs/Cluster/external-cluster/topology-for-external-mode/?h=topology

29 Labels and annotations

Resources in Kubernetes are organized in a flat structure, with no hierarchical information or relationship between them. However, such resources and
objects can be linked together and put in relationship through labels and annotations.

InfoInfo

For more information, see the Kubernetes documentation on annotations and labels.

In brief:

An annotation is used to assign additional non-identifying information to resources with the goal of facilitating integration with external tools.
A label is used to group objects and query them through the Kubernetes native selector capability.

You can select one or more labels or annotations to use in your EDB Postgres for Kubernetes deployments. Then you need to configure the operator so that
when you define these labels or annotations in a cluster's metadata, they're inherited by all resources created by it (including pods).

NoteNote

Label and annotation inheritance is the technique adopted by EDB Postgres for Kubernetes instead of alternative approaches such as pod
templates.

Predefined labels

EDB Postgres for Kubernetes manages the following predefined labels:

k8s.enterprisedb.io/backupDate : The date of the backup in ISO 8601 format (YYYYMMDD). This label is available only on VolumeSnapshot
resources.

k8s.enterprisedb.io/backupName : Backup identifier. This label is available only on VolumeSnapshot resources.

k8s.enterprisedb.io/backupMonth : The year/month when a backup was taken. This label is available only on VolumeSnapshot resources.

k8s.enterprisedb.io/backupTimeline : The timeline of the instance when a backup was taken. This label is available only on
VolumeSnapshot resources.

k8s.enterprisedb.io/backupYear : The year a backup was taken. This label is available only on VolumeSnapshot resources.

k8s.enterprisedb.io/cluster : Name of the cluster.

k8s.enterprisedb.io/immediateBackup : Applied to a Backup resource if the backup is the first one created from a ScheduledBackup
object having immediate set to true .

k8s.enterprisedb.io/instanceName : Name of the PostgreSQL instance (replaces the old and deprecated postgresql label).

k8s.enterprisedb.io/jobRole : Role of the job (that is, import , initdb , join , ...)

k8s.enterprisedb.io/onlineBackup : Whether the backup is online (hot) or taken when Postgres is down (cold). This label is available only on
VolumeSnapshot resources.

postgresql : deprecated, Name of the PostgreSQL instance. Use k8s.enterprisedb.io/instanceName instead

k8s.enterprisedb.io/podRole : Distinguishes pods dedicated to pooler deployment from those used for database instances.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 273

https://kubernetes.io/docs/concepts/overview/working-with-objects/annotations/
https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/

k8s.enterprisedb.io/poolerName : Name of the PgBouncer pooler.

k8s.enterprisedb.io/pvcRole : Purpose of the PVC, such as PG_DATA or PG_WAL .

k8s.enterprisedb.io/reload : Available on ConfigMap and Secret resources. When set to true , a change in the resource is
automatically reloaded by the operator.

k8s.enterprisedb.io/userType : Specifies the type of PostgreSQL user associated with the Secret , either superuser (Postgres superuser
access) or app (application-level user in EDB Postgres for Kubernetes terminology), and is limited to the default users created by EDB Postgres for
Kubernetes (typically postgres and app).

role - deprecateddeprecated : Whether the instance running in a pod is a primary or a replica . This label is deprecated, you should use
k8s.enterprisedb.io/instanceRole instead.

k8s.enterprisedb.io/scheduled-backup : When available, name of the ScheduledBackup resource that created a given Backup object.

k8s.enterprisedb.io/instanceRole : Whether the instance running in a pod is a primary or a replica .

Predefined annotations

EDB Postgres for Kubernetes manages the following predefined annotations:

container.apparmor.security.beta.kubernetes.io/* : Name of the AppArmor profile to apply to the named container. See AppArmor for
details.

k8s.enterprisedb.io/backupEndTime : The time a backup ended. This annotation is available only on VolumeSnapshot resources.

k8s.enterprisedb.io/backupEndWAL : The WAL at the conclusion of a backup. This annotation is available only on VolumeSnapshot
resources.

k8s.enterprisedb.io/backupStartTime : The time a backup started.

k8s.enterprisedb.io/backupStartWAL : The WAL at the start of a backup. This annotation is available only on VolumeSnapshot resources.

k8s.enterprisedb.io/coredumpFilter : Filter to control the coredump of Postgres processes, expressed with a bitmask. By default it's set to
0x31 to exclude shared memory segments from the dump. See PostgreSQL core dumps for more information.

k8s.enterprisedb.io/clusterManifest : Manifest of the Cluster owning this resource (such as a PVC). This label replaces the old,
deprecated k8s.enterprisedb.io/hibernateClusterManifest label.

k8s.enterprisedb.io/fencedInstances : List of the instances that need to be fenced, expressed in JSON format. The whole cluster is fenced if
the list contains the * element.

k8s.enterprisedb.io/forceLegacyBackup : Applied to a Cluster resource for testing purposes only, to simulate the behavior of barman-
cloud-backup prior to version 3.4 (Jan 2023) when the --name option wasn't available.

k8s.enterprisedb.io/hash : The hash value of the resource.

k8s.enterprisedb.io/hibernation : Applied to a Cluster resource to control the declarative hibernation feature. Allowed values are on and
off .

k8s.enterprisedb.io/managedSecrets : Pull secrets managed by the operator and automatically set in the ServiceAccount resources for
each Postgres cluster.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 274

k8s.enterprisedb.io/nodeSerial : On a pod resource, identifies the serial number of the instance within the Postgres cluster.

k8s.enterprisedb.io/operatorVersion : Version of the operator.

k8s.enterprisedb.io/pgControldata : Output of the pg_controldata command. This annotation replaces the old, deprecated
k8s.enterprisedb.io/hibernatePgControlData annotation.

k8s.enterprisedb.io/podEnvHash : Deprecated, as the k8s.enterprisedb.io/podSpec annotation now also contains the pod
environment.

k8s.enterprisedb.io/podPatch : Annotation can be applied on a Cluster resource.

When set to JSON-patch formatted patch, the patch will be applied on the instance Pods.

⚠️ WARNING: This feature may introduce discrepancies between the
operator’s expectations and Kubernetes behavior. Use with caution and only as a
last resort.

IMPORTANT: adding or changing this annotation won't trigger a rolling deployment
of the generated Pods. The latter can be triggered manually by the user with
`kubectl cnp restart`.

k8s.enterprisedb.io/podSpec : Snapshot of the spec of the pod generated by the operator. This annotation replaces the old, deprecated
k8s.enterprisedb.io/podEnvHash annotation.

k8s.enterprisedb.io/poolerSpecHash : Hash of the pooler resource.

k8s.enterprisedb.io/pvcStatus : Current status of the PVC: initializing , ready , or detached .

k8s.enterprisedb.io/reconcilePodSpec : Annotation can be applied to a Cluster or Pooler to prevent restarts.

When set to `disabled` on a `Cluster`, the operator prevents instances
from restarting due to changes in the PodSpec. This includes changes to:

 - Topology or affinity
 - Scheduler
 - Volumes or containers

When set to `disabled` on a `Pooler`, the operator restricts any modifications
to the deployment specification, except for changes to `spec.instances`.

k8s.enterprisedb.io/reconciliationLoop : When set to disabled on a Cluster , the operator prevents the reconciliation loop from
running.

k8s.enterprisedb.io/reloadedAt : Contains the latest cluster reload time. reload is triggered by the user through a plugin.

k8s.enterprisedb.io/skipEmptyWalArchiveCheck : When set to enabled on a Cluster resource, the operator disables the check that
ensures that the WAL archive is empty before writing data. Use at your own risk.

k8s.enterprisedb.io/skipWalArchiving : When set to enabled on a Cluster resource, the operator disables WAL archiving. This will set
archive_mode to off and require a restart of all PostgreSQL instances. Use at your own risk.

k8s.enterprisedb.io/snapshotStartTime : The time a snapshot started.

k8s.enterprisedb.io/snapshotEndTime : The time a snapshot was marked as ready to use.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 275

k8s.enterprisedb.io/validation : When set to disabled on a EDB Postgres for Kubernetes-managed custom resource, the validation
webhook allows all changes without restriction.

⚠️ WARNING: Disabling validation may permit unsafe or destructive
operations. Use this setting with caution and at your own risk.

k8s.enterprisedb.io/volumeSnapshotDeadline : Applied to Backup and ScheduledBackup resources, allows you to control how long
the operator should retry recoverable errors before considering the volume snapshot backup failed. In minutes, defaulting to 10.

kubectl.kubernetes.io/restartedAt : When available, the time of last requested restart of a Postgres cluster.

Prerequisites

By default, no label or annotation defined in the cluster's metadata is inherited by the associated resources. To enable label/annotation inheritance, follow
the instructions provided in Operator configuration.

The following continues from that example and limits it to the following:

Annotations: categories
Labels: app , environment , and workload

NoteNote

Feel free to select the names that most suit your context for both annotations and labels. You can also use wildcards in naming and adopt
strategies like using mycompany/* for all labels or setting annotations starting with mycompany/ to be inherited.

Defining cluster's metadata

When defining the cluster, before any resource is deployed, you can set the metadata as follows:

Once the cluster is deployed, you can verify, for example, that the labels were correctly set in the pods:

kubectl get pods --show-labels

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
 annotations::
 categories::
database
 labels::
 environment:: production
 workload::
database
 app::
sso
spec::
 # ...
<snip>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 276

Current limitations

Currently, EDB Postgres for Kubernetes doesn't automatically propagate labels or annotations deletions. Therefore, when an annotation or label is
removed from a cluster that was previously propagated to the underlying pods, the operator doesn't remove it on the associated resources.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 277

30 Monitoring

ImportantImportant

Installing Prometheus and Grafana is beyond the scope of this project. We assume they are correctly installed in your system. However, for
experimentation we provide instructions in Part 4 of the Quickstart.

Monitoring Instances

For each PostgreSQL instance, the operator provides an exporter of metrics for Prometheus via HTTP or HTTPS, on port 9187, named metrics . The
operator comes with a predefined set of metrics, as well as a highly configurable and customizable system to define additional queries via one or more
ConfigMap or Secret resources (see the "User defined metrics" section below for details).

ImportantImportant

EDB Postgres for Kubernetes, by default, installs a set of predefined metrics in a ConfigMap named default-monitoring .

InfoInfo

You can inspect the exported metrics by following the instructions in the "How to inspect the exported metrics" section below.

All monitoring queries that are performed on PostgreSQL are:

atomic (one transaction per query)
executed with the pg_monitor role
executed with application_name set to cnp_metrics_exporter
executed as user postgres

Please refer to the "Predefined Roles" section in PostgreSQL documentation for details on the pg_monitor role.

Queries, by default, are run against the main database, as defined by the specified bootstrap method of the Cluster resource, according to the
following logic:

using initdb : queries will be run by default against the specified database in initdb.database , or app if not specified
using recovery : queries will be run by default against the specified database in recovery.database , or postgres if not specified
using pg_basebackup : queries will be run by default against the specified database in pg_basebackup.database , or postgres if not
specified

The default database can always be overridden for a given user-defined metric, by specifying a list of one or more databases in the target_databases
option.

Prometheus/GrafanaPrometheus/Grafana

If you are interested in evaluating the integration of EDB Postgres for Kubernetes with Prometheus and Grafana, you can find a quick setup guide
in Part 4 of the quickstart

Monitoring with the Prometheus operator

A specific PostgreSQL cluster can be monitored using the Prometheus Operator's resource PodMonitor.

A PodMonitor that correctly points to the Cluster can be automatically created by the operator by setting
.spec.monitoring.enablePodMonitor to true in the Cluster resource itself (default: false).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 278

https://prometheus.io/
https://www.postgresql.org/docs/current/predefined-roles.html
https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator/blob/v0.75.1/Documentation/api.md#podmonitor

ImportantImportant

Any change to the PodMonitor created automatically will be overridden by the Operator at the next reconciliation cycle, in case you need to
customize it, you can do so as described below.

To deploy a PodMonitor for a specific Cluster manually, define it as follows and adjust as needed:

ImportantImportant

Ensure you modify the example above with a unique name, as well as the correct cluster's namespace and labels (e.g., cluster-example).

ImportantImportant

The postgresql label, used in previous versions of this document, is deprecated and will be removed in the future. Please use the
k8s.enterprisedb.io/cluster label instead to select the instances.

Enabling TLS on the Metrics Port

To enable TLS communication on the metrics port, configure the .spec.monitoring.tls.enabled setting to true . This setup ensures that the
metrics exporter uses the same server certificate used by PostgreSQL to secure communication on port 5432.

ImportantImportant

Changing the .spec.monitoring.tls.enabled setting will trigger a rolling restart of the Cluster.

If the PodMonitor is managed by the operator (.spec.monitoring.enablePodMonitor set to true), it will automatically contain the
necessary configurations to access the metrics via TLS.

To manually deploy a PodMonitor suitable for reading metrics via TLS, define it as follows and adjust as needed:

apiVersion::
monitoring.coreos.com/v1
kind:: PodMonitor
metadata::
 name:: cluster-
example
spec::
 selector::
 matchLabels::
 "k8s.enterprisedb.io/cluster":: cluster-
example
 podMetricsEndpoints::
 -- port:: metrics

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 279

ImportantImportant

Ensure you modify the example above with a unique name, as well as the correct Cluster's namespace and labels (e.g., cluster-example).

ImportantImportant

The serverName field in the metrics endpoint must match one of the names defined in the server certificate. If the default certificate is in use,
the serverName value should be in the format <cluster-name>-rw .

Predefined set of metrics

Every PostgreSQL instance exporter automatically exposes a set of predefined metrics, which can be classified in two major categories:

PostgreSQL related metrics, starting with cnp_collector_* , including:

number of WAL files and total size on disk
number of .ready and .done files in the archive status folder
requested minimum and maximum number of synchronous replicas, as well as the expected and actually observed values
number of distinct nodes accommodating the instances
timestamps indicating last failed and last available backup, as well as the first point of recoverability for the cluster
flag indicating if replica cluster mode is enabled or disabled
flag indicating if a manual switchover is required
flag indicating if fencing is enabled or disabled

Go runtime related metrics, starting with go_*

Below is a sample of the metrics returned by the localhost:9187/metrics endpoint of an instance. As you can see, the Prometheus format is self-
documenting:

HELP cnp_collector_collection_duration_seconds Collection time duration in seconds
TYPE cnp_collector_collection_duration_seconds gauge
cnp_collector_collection_duration_seconds{collector="Collect.up"} 0.0031393

HELP cnp_collector_collections_total Total number of times PostgreSQL was accessed for metrics.
TYPE cnp_collector_collections_total counter

apiVersion::
monitoring.coreos.com/v1
kind:: PodMonitor
metadata::
 name:: cluster-
example
spec::
 selector::
 matchLabels::
 "k8s.enterprisedb.io/cluster":: cluster-
example
 podMetricsEndpoints::
 -- port:: metrics
 scheme:: https
 tlsConfig::
 ca::
 secret::
 name:: cluster-example-
ca
 key::
ca.crt
 serverName:: cluster-example-
rw

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 280

cnp_collector_collections_total 2

HELP cnp_collector_fencing_on 1 if the instance is fenced, 0 otherwise
TYPE cnp_collector_fencing_on gauge
cnp_collector_fencing_on 0

HELP cnp_collector_nodes_used NodesUsed represents the count of distinct nodes accommodating the
instances. A value of '-1' suggests that the metric is not available. A value of '1' suggests that all
instances are hosted on a single node, implying the absence of High Availability (HA). Ideally this value
should match the number of instances in the cluster.
TYPE cnp_collector_nodes_used gauge
cnp_collector_nodes_used 3

HELP cnp_collector_last_collection_error 1 if the last collection ended with error, 0 otherwise.
TYPE cnp_collector_last_collection_error gauge
cnp_collector_last_collection_error 0

HELP cnp_collector_manual_switchover_required 1 if a manual switchover is required, 0 otherwise
TYPE cnp_collector_manual_switchover_required gauge
cnp_collector_manual_switchover_required 0

HELP cnp_collector_pg_wal Total size in bytes of WAL segments in the
'/var/lib/postgresql/data/pgdata/pg_wal' directory computed as (wal_segment_size * count)
TYPE cnp_collector_pg_wal gauge
cnp_collector_pg_wal{value="count"} 9
cnp_collector_pg_wal{value="slots_max"} NaN
cnp_collector_pg_wal{value="keep"} 32
cnp_collector_pg_wal{value="max"} 64
cnp_collector_pg_wal{value="min"} 5
cnp_collector_pg_wal{value="size"} 1.50994944e+08
cnp_collector_pg_wal{value="volume_max"} 128
cnp_collector_pg_wal{value="volume_size"} 2.147483648e+09

HELP cnp_collector_pg_wal_archive_status Number of WAL segments in the
'/var/lib/postgresql/data/pgdata/pg_wal/archive_status' directory (ready, done)
TYPE cnp_collector_pg_wal_archive_status gauge
cnp_collector_pg_wal_archive_status{value="done"} 6
cnp_collector_pg_wal_archive_status{value="ready"} 0

HELP cnp_collector_replica_mode 1 if the cluster is in replica mode, 0 otherwise
TYPE cnp_collector_replica_mode gauge
cnp_collector_replica_mode 0

HELP cnp_collector_sync_replicas Number of requested synchronous replicas (synchronous_standby_names)
TYPE cnp_collector_sync_replicas gauge
cnp_collector_sync_replicas{value="expected"} 0
cnp_collector_sync_replicas{value="max"} 0
cnp_collector_sync_replicas{value="min"} 0
cnp_collector_sync_replicas{value="observed"} 0

HELP cnp_collector_up 1 if PostgreSQL is up, 0 otherwise.
TYPE cnp_collector_up gauge
cnp_collector_up{cluster="cluster-example"} 1

HELP cnp_collector_postgres_version Postgres version
TYPE cnp_collector_postgres_version gauge
cnp_collector_postgres_version{cluster="cluster-example",full="17.5"} 17.5

HELP cnp_collector_last_failed_backup_timestamp The last failed backup as a unix timestamp
TYPE cnp_collector_last_failed_backup_timestamp gauge
cnp_collector_last_failed_backup_timestamp 0

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 281

HELP cnp_collector_last_available_backup_timestamp The last available backup as a unix timestamp
TYPE cnp_collector_last_available_backup_timestamp gauge
cnp_collector_last_available_backup_timestamp 1.63238406e+09

HELP cnp_collector_first_recoverability_point The first point of recoverability for the cluster as a unix
timestamp
TYPE cnp_collector_first_recoverability_point gauge
cnp_collector_first_recoverability_point 1.63238406e+09

HELP cnp_collector_lo_pages Estimated number of pages in the pg_largeobject table
TYPE cnp_collector_lo_pages gauge
cnp_collector_lo_pages{datname="app"} 0
cnp_collector_lo_pages{datname="postgres"} 78

HELP cnp_collector_wal_buffers_full Number of times WAL data was written to disk because WAL buffers
became full. Only available on PG 14+
TYPE cnp_collector_wal_buffers_full gauge
cnp_collector_wal_buffers_full{stats_reset="2023-06-19T10:51:27.473259Z"} 6472

HELP cnp_collector_wal_bytes Total amount of WAL generated in bytes. Only available on PG 14+
TYPE cnp_collector_wal_bytes gauge
cnp_collector_wal_bytes{stats_reset="2023-06-19T10:51:27.473259Z"} 1.0035147e+07

HELP cnp_collector_wal_fpi Total number of WAL full page images generated. Only available on PG 14+
TYPE cnp_collector_wal_fpi gauge
cnp_collector_wal_fpi{stats_reset="2023-06-19T10:51:27.473259Z"} 1474

HELP cnp_collector_wal_records Total number of WAL records generated. Only available on PG 14+
TYPE cnp_collector_wal_records gauge
cnp_collector_wal_records{stats_reset="2023-06-19T10:51:27.473259Z"} 26178

HELP cnp_collector_wal_sync Number of times WAL files were synced to disk via issue_xlog_fsync request
(if fsync is on and wal_sync_method is either fdatasync, fsync or fsync_writethrough, otherwise zero). Only
available on PG 14+
TYPE cnp_collector_wal_sync gauge
cnp_collector_wal_sync{stats_reset="2023-06-19T10:51:27.473259Z"} 37

HELP cnp_collector_wal_sync_time Total amount of time spent syncing WAL files to disk via
issue_xlog_fsync request, in milliseconds (if track_wal_io_timing is enabled, fsync is on, and
wal_sync_method is either fdatasync, fsync or fsync_writethrough, otherwise zero). Only available on PG 14+
TYPE cnp_collector_wal_sync_time gauge
cnp_collector_wal_sync_time{stats_reset="2023-06-19T10:51:27.473259Z"} 0

HELP cnp_collector_wal_write Number of times WAL buffers were written out to disk via XLogWrite request.
Only available on PG 14+
TYPE cnp_collector_wal_write gauge
cnp_collector_wal_write{stats_reset="2023-06-19T10:51:27.473259Z"} 7243

HELP cnp_collector_wal_write_time Total amount of time spent writing WAL buffers to disk via XLogWrite
request, in milliseconds (if track_wal_io_timing is enabled, otherwise zero). This includes the sync time
when wal_sync_method is either open_datasync or open_sync. Only available on PG 14+
TYPE cnp_collector_wal_write_time gauge
cnp_collector_wal_write_time{stats_reset="2023-06-19T10:51:27.473259Z"} 0

HELP cnp_last_error 1 if the last collection ended with error, 0 otherwise.
TYPE cnp_last_error gauge
cnp_last_error 0

HELP go_gc_duration_seconds A summary of the pause duration of garbage collection cycles.
TYPE go_gc_duration_seconds summary
go_gc_duration_seconds{quantile="0"} 5.01e-05
go_gc_duration_seconds{quantile="0.25"} 7.27e-05

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 282

go_gc_duration_seconds{quantile="0.5"} 0.0001748
go_gc_duration_seconds{quantile="0.75"} 0.0002959
go_gc_duration_seconds{quantile="1"} 0.0012776
go_gc_duration_seconds_sum 0.0035741
go_gc_duration_seconds_count 13

HELP go_goroutines Number of goroutines that currently exist.
TYPE go_goroutines gauge
go_goroutines 25

HELP go_info Information about the Go environment.
TYPE go_info gauge
go_info{version="go1.20.5"} 1

HELP go_memstats_alloc_bytes Number of bytes allocated and still in use.
TYPE go_memstats_alloc_bytes gauge
go_memstats_alloc_bytes 4.493744e+06

HELP go_memstats_alloc_bytes_total Total number of bytes allocated, even if freed.
TYPE go_memstats_alloc_bytes_total counter
go_memstats_alloc_bytes_total 2.1698216e+07

HELP go_memstats_buck_hash_sys_bytes Number of bytes used by the profiling bucket hash table.
TYPE go_memstats_buck_hash_sys_bytes gauge
go_memstats_buck_hash_sys_bytes 1.456234e+06

HELP go_memstats_frees_total Total number of frees.
TYPE go_memstats_frees_total counter
go_memstats_frees_total 172118

HELP go_memstats_gc_cpu_fraction The fraction of this program's available CPU time used by the GC since
the program started.
TYPE go_memstats_gc_cpu_fraction gauge
go_memstats_gc_cpu_fraction 1.0749468700447189e-05

HELP go_memstats_gc_sys_bytes Number of bytes used for garbage collection system metadata.
TYPE go_memstats_gc_sys_bytes gauge
go_memstats_gc_sys_bytes 5.530048e+06

HELP go_memstats_heap_alloc_bytes Number of heap bytes allocated and still in use.
TYPE go_memstats_heap_alloc_bytes gauge
go_memstats_heap_alloc_bytes 4.493744e+06

HELP go_memstats_heap_idle_bytes Number of heap bytes waiting to be used.
TYPE go_memstats_heap_idle_bytes gauge
go_memstats_heap_idle_bytes 5.8236928e+07

HELP go_memstats_heap_inuse_bytes Number of heap bytes that are in use.
TYPE go_memstats_heap_inuse_bytes gauge
go_memstats_heap_inuse_bytes 7.528448e+06

HELP go_memstats_heap_objects Number of allocated objects.
TYPE go_memstats_heap_objects gauge
go_memstats_heap_objects 26306

HELP go_memstats_heap_released_bytes Number of heap bytes released to OS.
TYPE go_memstats_heap_released_bytes gauge
go_memstats_heap_released_bytes 5.7401344e+07

HELP go_memstats_heap_sys_bytes Number of heap bytes obtained from system.
TYPE go_memstats_heap_sys_bytes gauge
go_memstats_heap_sys_bytes 6.5765376e+07

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 283

HELP go_memstats_last_gc_time_seconds Number of seconds since 1970 of last garbage collection.
TYPE go_memstats_last_gc_time_seconds gauge
go_memstats_last_gc_time_seconds 1.6311727586032727e+09

HELP go_memstats_lookups_total Total number of pointer lookups.
TYPE go_memstats_lookups_total counter
go_memstats_lookups_total 0

HELP go_memstats_mallocs_total Total number of mallocs.
TYPE go_memstats_mallocs_total counter
go_memstats_mallocs_total 198424

HELP go_memstats_mcache_inuse_bytes Number of bytes in use by mcache structures.
TYPE go_memstats_mcache_inuse_bytes gauge
go_memstats_mcache_inuse_bytes 14400

HELP go_memstats_mcache_sys_bytes Number of bytes used for mcache structures obtained from system.
TYPE go_memstats_mcache_sys_bytes gauge
go_memstats_mcache_sys_bytes 16384

HELP go_memstats_mspan_inuse_bytes Number of bytes in use by mspan structures.
TYPE go_memstats_mspan_inuse_bytes gauge
go_memstats_mspan_inuse_bytes 191896

HELP go_memstats_mspan_sys_bytes Number of bytes used for mspan structures obtained from system.
TYPE go_memstats_mspan_sys_bytes gauge
go_memstats_mspan_sys_bytes 212992

HELP go_memstats_next_gc_bytes Number of heap bytes when next garbage collection will take place.
TYPE go_memstats_next_gc_bytes gauge
go_memstats_next_gc_bytes 8.689632e+06

HELP go_memstats_other_sys_bytes Number of bytes used for other system allocations.
TYPE go_memstats_other_sys_bytes gauge
go_memstats_other_sys_bytes 2.566622e+06

HELP go_memstats_stack_inuse_bytes Number of bytes in use by the stack allocator.
TYPE go_memstats_stack_inuse_bytes gauge
go_memstats_stack_inuse_bytes 1.343488e+06

HELP go_memstats_stack_sys_bytes Number of bytes obtained from system for stack allocator.
TYPE go_memstats_stack_sys_bytes gauge
go_memstats_stack_sys_bytes 1.343488e+06

HELP go_memstats_sys_bytes Number of bytes obtained from system.
TYPE go_memstats_sys_bytes gauge
go_memstats_sys_bytes 7.6891144e+07

HELP go_threads Number of OS threads created.
TYPE go_threads gauge
go_threads 18

NoteNote

cnp_collector_postgres_version is a GaugeVec metric containing the Major.Minor version of Postgres (either PostgreSQL or
EPAS). The full semantic version Major.Minor.Patch can be found inside one of its label field named full .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 284

NoteNote

cnp_collector_first_recoverability_point and cnp_collector_last_available_backup_timestamp will be zero
until your first backup to the object store. This is separate from the WAL archival.

User defined metrics

This feature is currently in beta state and the format is inspired by the queries.yaml file (release 0.12) of the PostgreSQL Prometheus Exporter.

Custom metrics can be defined by users by referring to the created Configmap / Secret in a Cluster definition under the
.spec.monitoring.customQueriesConfigMap or customQueriesSecret section as in the following example:

The customQueriesConfigMap / customQueriesSecret sections contain a list of ConfigMap / Secret references specifying the key in
which the custom queries are defined. Take care that the referred resources have to be created in the same namespace as the Clusterin the same namespace as the Cluster resource.

NoteNote

If you want ConfigMaps and Secrets to be automaticallyautomatically reloaded by instances, you can add a label with key
k8s.enterprisedb.io/reload to it, otherwise you will have to reload the instances using the kubectl cnp reload subcommand.

ImportantImportant

When a user defined metric overwrites an already existing metric the instance manager prints a json warning log, containing the
message: Query with the same name already found. Overwriting the existing one. and a key queryName
containing the overwritten query name.

Example of a user defined metric

Here you can see an example of a ConfigMap containing a single custom query, referenced by the Cluster example above:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
 namespace:: test
spec::
 instances:: 3

 storage::
 size::
1Gi

 monitoring::
 customQueriesConfigMap::
 -- name:: example-
monitoring
 key:: custom-queries

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 285

https://github.com/prometheus-community/postgres_exporter/blob/v0.12.1/queries.yaml

A list of basic monitoring queries can be found in the default-monitoring.yaml file that is already installed in your EDB Postgres for Kubernetes
deployment (see "Default set of metrics").

Example of a user defined metric with predicate query

The predicate_query option allows the user to execute the query to collect the metrics only under the specified conditions. To do so the user needs
to provide a predicate query that returns at most one row with a single boolean column.

The predicate query is executed in the same transaction as the main query and against the same databases.

apiVersion:: v1
kind:: ConfigMap
metadata::
 name:: example-
monitoring
 namespace:: test
 labels::
 k8s.enterprisedb.io/reload:: ""
data::
 custom-queries: : |
 pg_replication:
 query: "SELECT CASE WHEN NOT
pg_is_in_recovery()
 THEN
0
 ELSE GREATEST
(0,
 EXTRACT(EPOCH FROM (now() -
pg_last_xact_replay_timestamp())))
 END AS
lag,
 pg_is_in_recovery() AS
in_recovery,
 EXISTS (TABLE pg_stat_wal_receiver) AS
is_wal_receiver_up,
 (SELECT count(*) FROM pg_stat_replication) AS
streaming_replicas"

metrics:
 -
lag:
 usage:
"GAUGE"
 description: "Replication lag behind primary in
seconds"
 -
in_recovery:
 usage:
"GAUGE"
 description: "Whether the instance is in
recovery"
 -
is_wal_receiver_up:
 usage:
"GAUGE"
 description: "Whether the instance wal_receiver is
up"
 -
streaming_replicas:
 usage:
"GAUGE"
 description: "Number of streaming replicas connected to the
instance"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 286

https://www.enterprisedb.com/docs/postgres_for_kubernetes/default-monitoring.yaml

Example of a user defined metric running on multiple databases

If the target_databases option lists more than one database the metric is collected from each of them.

Database auto-discovery can be enabled for a specific query by specifying a shell-like pattern (i.e., containing * , ? or []) in the list of
target_databases . If provided, the operator will expand the list of target databases by adding all the databases returned by the execution of SELECT
datname FROM pg_database WHERE datallowconn AND NOT datistemplate and matching the pattern according to path.Match() rules.

NoteNote

The * character has a special meaning in yaml, so you need to quote ("*") the target_databases value when it includes such a pattern.

It is recommended that you always include the name of the database in the returned labels, for example using the current_database() function as in
the following example:

some_query: : |
 predicate_query:
|
 SELECT
 some_bool as predicate
 FROM some_table
 query:
|

SELECT
 count(*) as
rows
 FROM some_table

metrics:
 -
rows:
 usage:
"GAUGE"
 description: "number of rows"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 287

https://pkg.go.dev/path#Match
https://yaml.org/spec/1.2/spec.html#id2786448

This will produce in the following metric being exposed:

cnp_some_query_rows{datname="albert"} 2
cnp_some_query_rows{datname="bb"} 5
cnp_some_query_rows{datname="freddie"} 10

Here is an example of a query with auto-discovery enabled which also runs on the template1 database (otherwise not returned by the aforementioned
query):

some_query: : |
 query:
|

SELECT
 current_database() as
datname,
 count(*) as
rows
 FROM some_table

metrics:
 -
datname:
 usage:
"LABEL"
 description: "Name of current database"
 -
rows:
 usage:
"GAUGE"
 description: "number of rows"
 target_databases:
 -
albert
 -
bb
 -
freddie

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 288

The above example will produce the following metrics (provided the databases exist):

cnp_some_query_rows{datname="albert"} 2
cnp_some_query_rows{datname="bb"} 5
cnp_some_query_rows{datname="freddie"} 10
cnp_some_query_rows{datname="template1"} 7
cnp_some_query_rows{datname="postgres"} 42

Structure of a user defined metric

Every custom query has the following basic structure:

Here is a short description of all the available fields:

<MetricName> : the name of the Prometheus metric

some_query: : |
 query:
|

SELECT
 current_database() as
datname,
 count(*) as
rows
 FROM some_table

metrics:
 -
datname:
 usage:
"LABEL"
 description: "Name of current database"
 -
rows:
 usage:
"GAUGE"
 description: "number of rows"
 target_databases:
 -
"*"
 -
"template1"

<MetricName>::
 query:: "<SQLQuery>"
 metrics::
 -- <ColumnName>::
 usage:: "<MetricType>"
 description:: "<MetricDescription>"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 289

<MetricName> : the name of the Prometheus metric
name : override <MetricName> , if defined
query : the SQL query to run on the target database to generate the metrics
primary : whether to run the query only on the primary instance
master : same as primary (for compatibility with the Prometheus PostgreSQL exporter's syntax - deprecated)
runonserver : a semantic version range to limit the versions of PostgreSQL the query should run on (e.g. ">=11.0.0" or ">=12.0.0
<=15.0.0")
target_databases : a list of databases to run the query against, or a shell-like pattern to enable auto discovery. Overwrites the default

database if provided.
predicate_query : a SQL query that returns at most one row and one boolean column to run on the target database. The system

evaluates the predicate and if true executes the query .
metrics : section containing a list of all exported columns, defined as follows:

<ColumnName> : the name of the column returned by the query
name : override the ColumnName of the column in the metric, if defined
usage : one of the values described below
description : the metric's description
metrics_mapping : the optional column mapping when usage is set to MAPPEDMETRIC

The possible values for usage are:

Column Usage Label Description

DISCARD this column should be ignored

LABEL use this column as a label

COUNTER use this column as a counter

GAUGE use this column as a gauge

MAPPEDMETRIC use this column with the supplied mapping of text values

DURATION use this column as a text duration (in milliseconds)

HISTOGRAM use this column as a histogram

Please visit the "Metric Types" page from the Prometheus documentation for more information.

Output of a user defined metric

Custom defined metrics are returned by the Prometheus exporter endpoint (:9187/metrics) with the following format:

cnp_<MetricName>_<ColumnName>{<LabelColumnName>=<LabelColumnValue> ... } <ColumnValue>

NoteNote

LabelColumnName are metrics with usage set to LABEL and their Value

Considering the pg_replication example above, the exporter's endpoint would return the following output when invoked:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 290

https://prometheus.io/docs/concepts/metric_types/

HELP cnp_pg_replication_in_recovery Whether the instance is in recovery
TYPE cnp_pg_replication_in_recovery gauge
cnp_pg_replication_in_recovery 0
HELP cnp_pg_replication_lag Replication lag behind primary in seconds
TYPE cnp_pg_replication_lag gauge
cnp_pg_replication_lag 0
HELP cnp_pg_replication_streaming_replicas Number of streaming replicas connected to the instance
TYPE cnp_pg_replication_streaming_replicas gauge
cnp_pg_replication_streaming_replicas 2
HELP cnp_pg_replication_is_wal_receiver_up Whether the instance wal_receiver is up
TYPE cnp_pg_replication_is_wal_receiver_up gauge
cnp_pg_replication_is_wal_receiver_up 0

Default set of metrics

The operator can be configured to automatically inject in a Cluster a set of monitoring queries defined in a ConfigMap or a Secret, inside the operator's
namespace. You have to set the MONITORING_QUERIES_CONFIGMAP or MONITORING_QUERIES_SECRET key in the "operator configuration",
respectively to the name of the ConfigMap or the Secret; the operator will then use the content of the queries key.

Any change to the queries content will be immediately reflected on all the deployed Clusters using it.

The operator installation manifests come with a predefined ConfigMap, called postgresql-operator-default-monitoring , to be used by all
Clusters. MONITORING_QUERIES_CONFIGMAP is by default set to postgresql-operator-default-monitoring in the operator
configuration.

If you want to disable the default set of metrics, you can:

disable it at operator level: set the MONITORING_QUERIES_CONFIGMAP / MONITORING_QUERIES_SECRET key to "" (empty string), in the
operator ConfigMap. Changes to operator ConfigMap require an operator restart.
disable it for a specific Cluster: set .spec.monitoring.disableDefaultQueries to true in the Cluster.

ImportantImportant

The ConfigMap or Secret specified via MONITORING_QUERIES_CONFIGMAP / MONITORING_QUERIES_SECRET will always be copied to
the Cluster's namespace with a fixed name: postgresql-operator-default-monitoring . So that, if you intend to have default
metrics, you should not create a ConfigMap with this name in the cluster's namespace.

Differences with the Prometheus Postgres exporter

EDB Postgres for Kubernetes is inspired by the PostgreSQL Prometheus Exporter, but presents some differences. In particular, the cache_seconds field
is not implemented in EDB Postgres for Kubernetes' exporter.

Monitoring the EDB Postgres for Kubernetes operator

The operator internally exposes Prometheus metrics via HTTP on port 8080, named metrics .

InfoInfo

You can inspect the exported metrics by following the instructions in the "How to inspect the exported metrics" section below.

Currently, the operator exposes default kubebuilder metrics. See kubebuilder documentation for more details.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 291

https://prometheus.io/
https://book.kubebuilder.io/reference/metrics.html

Monitoring the operator with Prometheus

The operator can be monitored using the Prometheus Operator by defining a PodMonitor pointing to the operator pod(s), as follows (note it's applied in the
same namespace as the operator):

How to inspect the exported metrics

In this section we provide basic instructions on how to inspect the metrics exported by a specific PostgreSQL instance manager (primary or replica) or the
operator.

NoteNote

In the examples below we assume we are working in the default namespace, and with the operator installed in the postgresql-operator-
system namespace. Please adapt to your use case.

Using port forwarding

The simplest way to inspect the metrics is to port-forward the metrics ports of the pods involved.

For example, to inspect the metrics on the -1 instance of cluster-example , we port-forward the 9187 port:

With port-forwarding active, the metrics can be inspected easily, for example on a web browser, using HTTP or HTTPS depending on the configuration, with
address: localhost:9187/metrics .

The operator pod also exports metrics, on port 8080. Similarly to instances, we port-forward the operator pod, which is located in the operator namespace:

With port forwarding active, the metrics are easily viewable on a browser at localhost:8080/metrics .

kubectl -n postgresql-operator-system apply -f -
<<EOF

apiVersion::
monitoring.coreos.com/v1
kind:: PodMonitor
metadata::
 name:: postgresql-operator-controller-
manager
spec::
 selector::
 matchLabels::
 app.kubernetes.io/name:: cloud-native-
postgresql
 podMetricsEndpoints::
 -- port:: metrics
EOF

kubectl port-forward cluster-example-1
9187:9187

kubectl -n postgresql-operator-system port-forward pod/<<CONTROLLER-MANAGER-POD>>
8080:8080

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 292

https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator/blob/v0.47.1/Documentation/api.md#podmonitor
http://localhost:8080/metrics

Using curl

Create the curl pod with the following command:

To inspect the metrics exported by an instance, you need to connect to port 9187 of the target pod. You will need to know the pod's IP address, which you
can find easily by running kubectl get pod -o wide . The following generic command will run curl on the desired pod:

kubectl exec -ti curl -- curl -s <pod_ip>:9187/metrics

For example, if your PostgreSQL cluster is called cluster-example and you want to retrieve the exported metrics of the first pod in the cluster, you can
run the following command to programmatically get the IP of that pod:

POD_IP=$(kubectl get pod cluster-example-1 --template '{{.status.podIP}}')

And then run:

kubectl exec -ti curl -- curl -s ${POD_IP}:9187/metrics

If you enabled TLS metrics, run instead:

kubectl exec -ti curl -- curl -sk https://${POD_IP}:9187/metrics

To access the metrics of the operator, you need to point to the pod where the operator is running, and use TCP port 8080 as target.

When you're done inspecting metrics, please remember to delete the curl pod:

kubectl delete -f curl.yaml

Auxiliary resources

ImportantImportant

These resources are provided for illustration and experimentation, and do not represent any kind of recommendation for your production system

In the doc/src/samples/monitoring/ directory you will find a series of sample files for observability. Please refer to Part 4 of the quickstart
section for context:

kube-stack-config.yaml : a configuration file for the kube-stack helm chart installation. It ensures that Prometheus listens for all

kubectl apply -f -
<<EOF

apiVersion:: v1
kind::
Pod
metadata::
 name:: curl
spec::
 containers::
 -- name:: curl
 image::
curlimages/curl:8.2.1
 command:: [['sleep',, '3600']]
EOF

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 293

https://github.com/EnterpriseDB/docs/tree/main/product_docs/docs/postgres_for_kubernetes/1/samples/monitoring

kube-stack-config.yaml : a configuration file for the kube-stack helm chart installation. It ensures that Prometheus listens for all
PodMonitor resources.
prometheusrule.yaml : a PrometheusRule with alerts for EDB Postgres for Kubernetes. NOTE: this does not include inter-operation with

notification services. Please refer to the Prometheus documentation.
podmonitor.yaml : a PodMonitor for the EDB Postgres for Kubernetes Operator deployment.

In addition, we provide the "raw" sources for the Prometheus alert rules in the alerts.yaml file.

A Grafana dashboard for EDB Postgres for Kubernetes clusters and operator, is kept in the dedicated repository cloudnative-pg/grafana-
dashboards as a dashboard JSON configuration: grafana-dashboard.json . The file can be downloaded, and imported into Grafana (menus:
Dashboard > New > Import).

For a general reference on the settings available on kube-prometheus-stack , you can execute helm show values prometheus-
community/kube-prometheus-stack . Please refer to the kube-prometheus-stack page for more detail.

Monitoring on OpenShift

Starting on Openshift 4.6 there is a complete monitoring stack called "Monitoring for user-defined projects" which can be enabled by cluster
administrators. Cloud Native PostgreSQL will automatically create a PodMonitor object if the option spec.monitoring.enablePodMonitor of
the Cluster definition is set to true .

To enable cluster wide user-defined monitoring you must first create a ConfigMap with the name cluster-monitoring-config in the
openshift-monitoring namespace/project with the following content:

If the ConfigMap already exists, just add the variable enableUserWorkload: true .

ImportantImportant

This will enable the monitoring for the whole cluster, if it is needed only for one namespace/project please refer to the official Red Hat
documentation or talk with your cluster administrator.

After that, just create the proper PodMonitor in the namespace/project with something similar to this:

apiVersion:: v1
kind:: ConfigMap
metadata::
 name:: cluster-monitoring-
config
 namespace:: openshift-monitoring
data::
 config.yaml::
|
 enableUserWorkload:
true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 294

https://prometheus.io/docs/alerting/latest/alertmanager/
https://github.com/cloudnative-pg/grafana-dashboards/tree/main
https://github.com/cloudnative-pg/grafana-dashboards/blob/main/charts/cluster/grafana-dashboard.json
https://github.com/prometheus-community/helm-charts/tree/main/charts/kube-prometheus-stack
https://docs.openshift.com/container-platform/4.6/monitoring/enabling-monitoring-for-user-defined-projects.html

NoteNote

We currently don’t use ServiceMonitor because our service doesn’t define a port pointing to the metrics. If we added a metric port this could
expose sensitive data.

apiVersion::
monitoring.coreos.com/v1
kind:: PodMonitor
metadata::
 name:: cluster-
sample
spec::
 selector::
 matchLabels::
 postgresql:: cluster-
sample
 podMetricsEndpoints::
 -- port:: metrics

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 295

31 Logging

EDB Postgres for Kubernetes outputs logs in JSON format directly to standard output, including PostgreSQL logs, without persisting them to storage for
security reasons. This design facilitates seamless integration with most Kubernetes-compatible log management tools, including command line ones like
stern.

ImportantImportant

Long-term storage and management of logs are outside the scope of the operator and should be handled at the Kubernetes infrastructure level.
For more information, see the Kubernetes Logging Architecture documentation.

Each log entry includes the following fields:

level – The log level (e.g., info , notice).
ts – The timestamp.
logger – The type of log (e.g., postgres , pg_controldata).
msg – The log message, or the keyword record if the message is in JSON format.
record – The actual record, with a structure that varies depending on the logger type.
logging_pod – The name of the pod where the log was generated.

InfoInfo

If your log ingestion system requires custom field names, you can rename the level and ts fields using the log-field-level and
log-field-timestamp flags in the operator controller. This can be configured by editing the Deployment definition of the
cloudnative-pg operator.

Cluster Logs

You can configure the log level for the instance pods in the cluster specification using the logLevel option. Available log levels are: error ,
warning , info (default), debug , and trace .

ImportantImportant

Currently, the log level can only be set at the time the instance starts. Changes to the log level in the cluster specification after the cluster has
started will only apply to new pods, not existing ones.

Operator Logs

The logs produced by the operator pod can be configured with log levels, same as instance pods: error , warning , info (default), debug , and
trace .

The log level for the operator can be configured by editing the Deployment definition of the operator and setting the --log-level command line
argument to the desired value.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 296

https://github.com/stern/stern
https://kubernetes.io/docs/concepts/cluster-administration/logging/

PostgreSQL Logs

Each PostgreSQL log entry is a JSON object with the logger key set to postgres . The structure of the log entries is as follows:

InfoInfo

Internally, the operator uses PostgreSQL's CSV log format. For more details, refer to the PostgreSQL documentation on CSV log format.

PGAudit Logs

EDB Postgres for Kubernetes offers seamless and native support for PGAudit on PostgreSQL clusters.

To enable PGAudit, add the necessary pgaudit parameters in the postgresql section of the cluster configuration.

ImportantImportant

The PGAudit library must be added to shared_preload_libraries . EDB Postgres for Kubernetes automatically manages this based on the
presence of pgaudit.* parameters in the PostgreSQL configuration. The operator handles both the addition and removal of the library from
shared_preload_libraries .

Additionally, the operator manages the creation and removal of the PGAudit extension across all databases within the cluster.

{
 "level": "info",
 "ts": 1619781249.7188137,
 "logger": "postgres",
 "msg": "record",
 "record": {
 "log_time": "2021-04-30 11:14:09.718 UTC",
 "user_name": "",
 "database_name": "",
 "process_id": "25",
 "connection_from": "",
 "session_id": "608be681.19",
 "session_line_num": "1",
 "command_tag": "",
 "session_start_time": "2021-04-30 11:14:09
UTC",
 "virtual_transaction_id": "",
 "transaction_id": "0",
 "error_severity": "LOG",
 "sql_state_code": "00000",
 "message": "database system was interrupted; last known up at 2021-04-30 11:14:07
UTC",
 "detail": "",
 "hint": "",
 "internal_query": "",
 "internal_query_pos": "",
 "context": "",
 "query": "",
 "query_pos": "",
 "location": "",
 "application_name": "",
 "backend_type": "startup"
 },
 "logging_pod": "cluster-example-1",
}

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 297

https://www.postgresql.org/docs/current/runtime-config-logging.html
https://www.pgaudit.org/

ImportantImportant

EDB Postgres for Kubernetes executes the CREATE EXTENSION and DROP EXTENSION commands in all databases within the cluster that
accept connections.

The following example demonstrates a PostgreSQL Cluster deployment with PGAudit enabled and configured:

The audit CSV log entries generated by PGAudit are parsed and routed to standard output in JSON format, similar to all other logs:

.logger is set to pgaudit .

.msg is set to record .

.record contains the entire parsed record as a JSON object. This structure resembles that of logging_collector logs, with the exception of

.record.audit , which contains the PGAudit CSV message formatted as a JSON object.

This example shows sample log entries:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3

 postgresql::
 parameters::
 "pgaudit.log":: "all, -
misc"
 "pgaudit.log_catalog":: "off"
 "pgaudit.log_parameter":: "on"
 "pgaudit.log_relation":: "on"

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 298

See the PGAudit documentation for more details about each field in a record.

EDB Audit logs

Clusters that are running on EDB Postgres Advanced Server (EPAS) can enable EDB Audit as follows:

{
 "level": "info",
 "ts": 1627394507.8814096,
 "logger": "pgaudit",
 "msg": "record",
 "record": {
 "log_time": "2021-07-27 14:01:47.881 UTC",
 "user_name": "postgres",
 "database_name": "postgres",
 "process_id": "203",
 "connection_from": "[local]",
 "session_id": "610011cb.cb",
 "session_line_num": "1",
 "command_tag": "SELECT",
 "session_start_time": "2021-07-27 14:01:47
UTC",
 "virtual_transaction_id": "3/336",
 "transaction_id": "0",
 "error_severity": "LOG",
 "sql_state_code": "00000",
 "backend_type": "client
backend",
 "audit": {
 "audit_type": "SESSION",
 "statement_id": "1",
 "substatement_id": "1",
 "class": "READ",
 "command": "SELECT FOR KEY
SHARE",
 "statement": "SELECT
pg_current_wal_lsn()",
 "parameter": "<none>"
 }
 },
 "logging_pod": "cluster-example-1",
}

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 299

https://github.com/pgaudit/pgaudit/blob/master/README.md#format
https://www.enterprisedb.com/docs/epas/latest/epas_security_guide/05_edb_audit_logging/

Setting .spec.postgresql.epas.audit: true enforces the following parameters:

edb_audit = 'csv'
edb_audit_destination = 'file'
edb_audit_directory = '/controller/log'
edb_audit_filename = 'edb_audit'
edb_audit_rotation_day = 'none'
edb_audit_rotation_seconds = '0'
edb_audit_rotation_size = '0'
edb_audit_tag = ''
edb_log_every_bulk_value = 'false'

Other parameters can be passed via .spec.postgresql.parameters as usual.

The audit CSV logs are parsed and routed to stdout in JSON format, similarly to all the remaining logs:

.logger set to edb_audit

.msg set to record

.record containing the whole parsed record as a JSON object

See the example below:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 imageName:: quay.io/enterprisedb/edb-postgres-advanced:13
 licenseKey:: <LICENSE>

 postgresql::
 epas::
 audit:: true

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 300

See EDB Audit file for more details about the records' fields.

Other Logs

All logs generated by the operator and its instances are in JSON format, with the logger field indicating the process that produced them. The possible
logger values are as follows:

barman-cloud-wal-archive : logs from barman-cloud-wal-archive
barman-cloud-wal-restore : logs from barman-cloud-wal-restore
edb_audit : from the EDB Audit extension
initdb : logs from running initdb
pg_basebackup : logs from running pg_basebackup
pg_controldata : logs from running pg_controldata
pg_ctl : logs from running any pg_ctl subcommand
pg_rewind : logs from running pg_rewind
pgaudit : logs from the PGAudit extension
postgres : logs from the postgres instance (with msg distinct from record)
wal-archive : logs from the wal-archive subcommand of the instance manager
wal-restore : logs from the wal-restore subcommand of the instance manager

instance-manager : from the PostgreSQL instance manager

{
 "level": "info",
 "ts": 1624629110.7641866,
 "logger": "edb_audit",
 "msg": "record",
 "record": {
 "log_time": "2021-06-25 13:51:50.763 UTC",
 "user_name": "postgres",
 "database_name": "postgres",
 "process_id": "68",
 "connection_from": "[local]",
 "session_id": "60d5df76.44",
 "session_line_num": "5",
 "process_status": "idle in transaction",
 "session_start_time": "2021-06-25 13:51:50
UTC",
 "virtual_transaction_id": "3/93",
 "transaction_id": "1183",
 "error_severity": "AUDIT",
 "sql_state_code": "00000",
 "message": "statement: GRANT EXECUTE ON function pg_catalog.pg_read_binary_file(text) TO
\"streaming_replica\"",
 "detail": "",
 "hint": "",
 "internal_query": "",
 "internal_query_pos": "",
 "context": "",
 "query": "",
 "query_pos": "",
 "location": "",
 "application_name": "",
 "backend_type": "client
backend",
 "command_tag": "GRANT",
 "audit_tag": "",
 "type": "grant"
 },
 "logging_pod": "cluster-example-1",
}

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 301

https://www.enterprisedb.com/docs/epas/latest/epas_security_guide/05_edb_audit_logging/

instance-manager : from the PostgreSQL instance manager

With the exception of postgres and edb_audit , which follows a specific structure, all other logger values contain the msg field with the
escaped message that is logged.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 302

32 Certificates

EDB Postgres for Kubernetes was designed to natively support TLS certificates. To set up a cluster, the operator requires:

A server certification authority (CA) certificate
A server TLS certificate signed by the server CA
A client CA certificate
A streaming replication client certificate generated by the client CA

NoteNote

You can find all the secrets used by the cluster and their expiration dates in the cluster's status.

EDB Postgres for Kubernetes is very flexible when it comes to TLS certificates. It primarily operates in two modes:

1. Operator managedOperator managed – Certificates are internally managed by the operator in a fully automated way and signed using a CA created by EDB Postgres for
Kubernetes.

2. User providedUser provided – Certificates are generated outside the operator and imported in the cluster definition as secrets. EDB Postgres for Kubernetes
integrates itself with cert-manager (See Cert-manager example.)

You can also choose a hybrid approach, where only part of the certificates is generated outside CNP.

NoteNote

The operator and instances verify server certificates against the CA only, disregarding the DNS name. This approach is due to the typical absence
of DNS names in user-provided certificates for the <cluster>-rw service used for communication within the cluster.

Operator-Managed Mode

By default, the operator automatically generates a single Certificate Authority (CA) to issue both client and server certificates. These certificates are
managed continuously by the operator, with automatic renewal 7 days before expiration (within a 90-day validity period).

InfoInfo

You can adjust this default behavior by configuring the CERTIFICATE_DURATION and EXPIRING_CHECK_THRESHOLD environment
variables. For detailed guidance, refer to the Operator Configuration.

ImportantImportant

Certificate renewal does not cause any downtime for the PostgreSQL server, as a simple reload operation is sufficient. However, any user-
managed certificates not controlled by EDB Postgres for Kubernetes must be re-issued following the renewal process.

When generating certificates, the operator assumes that the Kubernetes cluster's DNS zone is set to cluster.local by default. This behavior can be
customized by setting the KUBERNETES_CLUSTER_DOMAIN environment variable. A convenient alternative is to use the operator's configuration
capability.

Server certificates

Server CA secret

The operator generates a self-signed CA and stores it in a generic secret containing the following keys:

ca.crt – CA certificate used to validate the server certificate, used as sslrootcert in clients' connection strings.
ca.key – The key used to sign the server SSL certificate automatically.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 303

https://cert-manager.io/

Server TLS secret

The operator uses the generated self-signed CA to sign a server TLS certificate. It's stored in a secret of type kubernetes.io/tls and configured to be
used as ssl_cert_file and ssl_key_file by the instances. This approach enables clients to verify their identity and connect securely.

Server alternative DNS names

In addition to the default ones, you can specify DNS server alternative names as part of the generated server TLS secret.

Client certificates

Client CA secret

By default, the same self-signed CA as the server CA is used. The public part is passed as ssl_ca_file to all the instances so it can verify client
certificates it signed. The private key is stored in the same secret and used to sign client certificates generated by the kubectl cnp plugin.

Client streaming_replica certificate

The operator uses the generated self-signed CA to sign a client certificate for the user streaming_replica , storing it in a secret of type
kubernetes.io/tls . To allow secure connection to the primary instance, this certificate is passed as sslcert and sslkey in the replicas'

connection strings.

User-provided certificates mode

Server certificates

If required, you can also provide the two server certificates, generating them using a separate component such as cert-manager. To use a custom server TLS
certificate for a cluster, you must specify the following parameters:

serverTLSSecret – The name of a secret of type kubernetes.io/tls containing the server TLS certificate. It must contain both the
standard tls.crt and tls.key keys.
serverCASecret – The name of a secret containing the ca.crt key.

NoteNote

The operator still creates and manages the two secrets related to client certificates.

NoteNote

The operator and instances verify server certificates against the CA only, disregarding the DNS name. This approach is due to the typical absence
of DNS names in user-provided certificates for the <cluster>-rw service used for communication within the cluster.

NoteNote

If you want ConfigMaps and secrets to be reloaded by instances, you can add a label with the key k8s.enterprisedb.io/reload to it.
Otherwise you must reload the instances using the kubectl cnp reload subcommand.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 304

https://cert-manager.io/

Example

Given the following files:

server-ca.crt – The certificate of the CA that signed the server TLS certificate.
server.crt – The certificate of the server TLS certificate.
server.key – The private key of the server TLS certificate.

Create a secret containing the CA certificate:

Create a secret with the TLS certificate:

Create a PostgreSQL cluster referencing those secrets:

The new cluster uses the provided server certificates for TLS connections.

Cert-manager example

This simple example shows how to use cert-manager to set up a self-signed CA and generate the needed TLS server certificate:

kubectl create secret generic my-postgresql-server-ca
\
 --from-file==ca.crt=./server-ca.crt

kubectl create secret tls my-postgresql-server
\
 --cert==./server.crt --key==./server.key

kubectl apply -f - <<EOF<<EOF
apiVersion: postgresql.k8s.enterprisedb.io/v1
kind: Cluster
metadata:
 name: cluster-
example
spec:
 instances:
3
 certificates:
 serverCASecret: my-postgresql-server-
ca
 serverTLSSecret: my-postgresql-
server

storage:
 storageClass:
standard
 size:
1Gi
EOFEOF

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 305

https://cert-manager.io/

Cert-manager creates a secret named my-postgres-server-cert . It contains all the needed files and can be referenced from a cluster as follows:

apiVersion:: cert-manager.io/v1
kind::
Issuer
metadata::
 name:: selfsigned-
issuer
spec::
 selfSigned:: {}{}

apiVersion:: v1
kind::
Secret
metadata::
 name:: my-postgres-server-
cert
 labels::
 k8s.enterprisedb.io/reload:: ""

apiVersion:: cert-manager.io/v1
kind::
Certificate
metadata::
 name:: my-postgres-server-
cert
spec::
 secretName:: my-postgres-server-
cert
 usages::
 -- server
auth
 dnsNames::
 -- cluster-example-
lb.internal.mydomain.net
 -- cluster-example-
rw
 -- cluster-example-
rw.default
 -- cluster-example-
rw.default.svc
 -- cluster-example-
r
 -- cluster-example-
r.default
 -- cluster-example-
r.default.svc
 -- cluster-example-
ro
 -- cluster-example-
ro.default
 -- cluster-example-
ro.default.svc
 issuerRef::
 name:: selfsigned-
issuer
 kind::
Issuer
 group:: cert-manager.io

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 306

You can find a complete example using cert-manager to manage both server and client CA and certificates in the cluster-example-cert-manager.yaml
deployment manifest.

Client certificate

If required, you can also provide the two client certificates, generating them using a separate component such as cert-manager or HashiCorp vault. To use a
custom CA to verify client certificates for a cluster, you must specify the following parameters:

replicationTLSSecret – The name of a secret of type kubernetes.io/tls containing the client certificate for user
streaming_replica . It must contain both the standard tls.crt and tls.key keys.
clientCASecret – The name of a secret containing the ca.crt key of the CA to use to verify client certificate.

NoteNote

The operator still creates and manages the two secrets related to server certificates.

NoteNote

As the cluster isn't in control of the client CA secret key, you can no longer generate client certificates using kubectl cnp certificate .

NoteNote

If you want ConfigMaps and secrets to be automatically reloaded by instances, you can add a label with the key
k8s.enterprisedb.io/reload to it. Otherwise, you must reload the instances using the kubectl cnp reload subcommand.

Cert-manager example

This simple example shows how to use cert-manager to set up a self-signed CA and generate the needed TLS server certificate:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 certificates::
 serverTLSSecret:: my-postgres-server-
cert
 serverCASecret:: my-postgres-server-
cert
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 307

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-cert-manager.yaml
https://cert-manager.io/
https://www.vaultproject.io/docs/secrets/pki
https://cert-manager.io/

Cert-manager creates a secret named my-postgres-client-cert that contains all the needed files. You can reference it from a cluster as follows:

You can find a complete example using cert-manager to manage both server and client CA and certificates in the cluster-example-cert-manager.yaml
deployment manifest.

apiVersion:: cert-manager.io/v1
kind::
Issuer
metadata::
 name:: selfsigned-
issuer
spec::
 selfSigned:: {}{}

apiVersion:: v1
kind::
Secret
metadata::
 name:: my-postgres-client-
cert
 labels::
 k8s.enterprisedb.io/reload:: ""

apiVersion:: cert-manager.io/v1
kind::
Certificate
metadata::
 name:: my-postgres-client-
cert
spec::
 secretName:: my-postgres-client-
cert
 usages::
 -- client
auth
 commonName:: streaming_replica
 issuerRef::
 name:: selfsigned-
issuer
 kind::
Issuer
 group:: cert-manager.io

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 certificates::
 clientCASecret:: my-postgres-client-
cert
 replicationTLSSecret:: my-postgres-client-
cert
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 308

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-cert-manager.yaml

33 Client TLS/SSL connections

CertificatesCertificates

See Certificates for more details on how EDB Postgres for Kubernetes supports TLS certificates.

The EDB Postgres for Kubernetes operator was designed to work with TLS/SSL for both encryption in transit and authentication on the server and client
sides. Clusters created using the CNP operator come with a certification authority (CA) to create and sign TLS client certificates. Using the cnp plugin for
kubectl, you can issue a new TLS client certificate for authenticating a user instead of using passwords.

These instructions for authenticating using TLS/SSL certificates assume you installed a cluster using the cluster-example-pg-hba.yaml manifest. According
to the convention-over-configuration paradigm, that file creates an app database that's owned by a user called app. (You can change this convention by
way of the initdb configuration in the bootstrap section.)

Issuing a new certificate

About CNP plugin for kubectlAbout CNP plugin for kubectl

See the Certificates in the EDB Postgres for Kubernetes plugin content for details on how to use the plugin for kubectl.

You can create a certificate for the app user in the cluster-example PostgreSQL cluster as follows:

kubectl cnp certificate cluster-app \
 --cnp-cluster cluster-example \
 --cnp-user app

You can now verify the certificate:

kubectl get secret cluster-app \
 -o jsonpath="{.data['tls\.crt']}" \
 | base64 -d | openssl x509 -text -noout \
 | head -n 11

Output:

Certificate:
 Data:
 Version: 3 (0x2)
 Serial Number:
 5d:e1:72:8a:39:9f:ce:51:19:9d:21:ff:1e:4b:24:5d
 Signature Algorithm: ecdsa-with-SHA256
 Issuer: OU = default, CN = cluster-example
 Validity
 Not Before: Mar 22 10:22:14 2021 GMT
 Not After : Mar 22 10:22:14 2022 GMT
 Subject: CN = app

As you can see, TLS client certificates by default are created with 90 days of validity, and with a simple CN that corresponds to the username in PostgreSQL.
You can specify the validity and threshold values using the EXPIRE_CHECK_THRESHOLD and CERTIFICATE_DURATION parameters. This is
necessary to leverage the cert authentication method for hostssl entries in pg_hba.conf .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 309

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-pg-hba.yaml

Testing the connection via a TLS certificate

Next, test this client certificate by configuring a demo client application that connects to your EDB Postgres for Kubernetes cluster.

The following manifest, called cert-test.yaml , creates a demo pod with a test application in the same namespace where your database cluster is
running:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 310

This pod mounts secrets managed by the EDB Postgres for Kubernetes operator, including:

sslcert – The TLS client public certificate.
sslkey – The TLS client certificate private key.

sslrootcert – The TLS CA certificate that signed the certificate on the server to use to verify the identity of the instances.

apiVersion:: apps/v1
kind:: Deployment
metadata::
 name:: cert-test
spec::
 replicas:: 1
 selector::
 matchLabels::
 app:: webtest
 template::
 metadata::
 labels::
 app:: webtest
 spec::
 containers::
 -- image:: ghcr.io/cloudnative-pg/webtest:1.7.0
 name:: cert-test
 volumeMounts::
 -- name:: secret-volume-root-ca
 mountPath:: /etc/secrets/ca
 -- name:: secret-volume-app
 mountPath::
/etc/secrets/app
 ports::
 -- containerPort:: 8080
 env::
 -- name:: DATABASE_URL
 value: : >

sslkey=/etc/secrets/app/tls.key
 sslcert=/etc/secrets/app/tls.crt

sslrootcert=/etc/secrets/ca/ca.crt
 host=cluster-example-rw.default.svc
 dbname=app

user=app
 sslmode=verify-full
 -- name:: SQL_QUERY
 value:: SELECT
1
 readinessProbe::
 httpGet::
 port:: 8080
 path::
/tx
 volumes::
 -- name:: secret-volume-root-ca
 secret::
 secretName:: cluster-example-
ca
 defaultMode:: 0600
 -- name:: secret-volume-app
 secret::
 secretName:: cluster-
app
 defaultMode:: 0600

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 311

sslrootcert – The TLS CA certificate that signed the certificate on the server to use to verify the identity of the instances.

They're used to create the default resources that psql (and other libpq-based applications, like pgbench) requires to establish a TLS-encrypted connection
to the Postgres database.

By default, psql searches for certificates in the ~/.postgresql directory of the current user, but you can use the sslkey , sslcert , and
sslrootcert options to point libpq to the actual location of the cryptographic material. The content of these files is gathered from the secrets that

were previously created by using the cnp plugin for kubectl.

Deploy the application:

kubectl create -f cert-test.yaml

Then use the created pod as the PostgreSQL client to validate the SSL connection and authentication using the TLS certificates you just created.

A readiness probe was configured to ensure that the application is ready when the database server can be reached.

You can verify that the connection works. To do so, execute an interactive bash inside the pod's container to run psql using the necessary options. The
PostgreSQL server is exposed through the read-write Kubernetes service. Point the psql command to connect to this service:

kubectl exec -it cert-test -- bash -c "psql
'sslkey=/etc/secrets/app/tls.key sslcert=/etc/secrets/app/tls.crt
sslrootcert=/etc/secrets/ca/ca.crt host=cluster-example-rw.default.svc dbname=app
user=app sslmode=verify-full' -c 'select version();'"

Output:

 version
--

PostgreSQL 17.5 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 8.3.1 20191121 (Red Hat
8.3.1-5), 64-bit
(1 row)

About TLS protocol versions

By default, the operator sets both ssl_min_protocol_version and ssl_max_protocol_version to TLSv1.3 .

This assumes that the PostgreSQL operand images include an OpenSSL library that supports the TLSv1.3 version. If not, or if your client applications
need a lower version number, you need to manually configure it in the PostgreSQL configuration as any other Postgres GUC.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 312

https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SSL-MIN-PROTOCOL-VERSION
https://www.postgresql.org/docs/current/runtime-config-connection.html#GUC-SSL-MAX-PROTOCOL-VERSION

34 Connecting from an application

Applications are supposed to work with the services created by EDB Postgres for Kubernetes in the same Kubernetes cluster.

For more information on services and how to manage them, please refer to the "Service management" section.

HintHint

It is highly recommended using those services in your applications, and avoiding connecting directly to a specific PostgreSQL instance, as the
latter can change during the cluster lifetime.

You can use these services in your applications through:

DNS resolution
environment variables

For the credentials to connect to PostgreSQL, you can use the secrets generated by the operator.

Connection PoolingConnection Pooling

Please refer to the "Connection Pooling" section for information about how to take advantage of PgBouncer as a connection pooler, and create an
access layer between your applications and the PostgreSQL clusters.

DNS resolution

You can use the Kubernetes DNS service to point to a given server. The Kubernetes DNS service is required by the operator. You can do that by using the
name of the service if the application is deployed in the same namespace as the PostgreSQL cluster. In case the PostgreSQL cluster resides in a different
namespace, you can use the full qualifier: service-name.namespace-name .

DNS is the preferred and recommended discovery method.

Environment variables

If you deploy your application in the same namespace that contains the PostgreSQL cluster, you can also use environment variables to connect to the
database.

For example, suppose that your PostgreSQL cluster is called pg-database , you can use the following environment variables in your applications:

PG_DATABASE_R_SERVICE_HOST : the IP address of the service pointing to all the PostgreSQL instances for read-only workloads

PG_DATABASE_RO_SERVICE_HOST : the IP address of the service pointing to all hot-standby replicas of the cluster

PG_DATABASE_RW_SERVICE_HOST : the IP address of the service pointing to the primary instance of the cluster

Secrets

The PostgreSQL operator will generate up to two basic-auth type secrets for every PostgreSQL cluster it deploys:

[cluster name]-app (unless you have provided an existing secret through .spec.bootstrap.initdb.secret.name)
[cluster name]-superuser (if .spec.enableSuperuserAccess is set to true and you have not specified a different secret using
.spec.superuserSecret)

Each secret contain the following:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 313

username
password
hostname to the RW service
port number
database name
a working .pgpass file
uri
jdbc-uri

The -app credentials are the ones that should be used by applications connecting to the PostgreSQL cluster, and correspond to the user owning the
database.

The -superuser ones are supposed to be used only for administrative purposes, and correspond to the postgres user.

ImportantImportant

Superuser access over the network is disabled by default.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 314

https://www.postgresql.org/docs/current/libpq-pgpass.html
https://www.postgresql.org/docs/current/libpq-connect.html#LIBPQ-CONNSTRING
https://jdbc.postgresql.org/documentation/use/#connecting-to-the-database

35 Connection pooling

EDB Postgres for Kubernetes provides native support for connection pooling with PgBouncer, one of the most popular open source connection poolers for
PostgreSQL, through the Pooler custom resource definition (CRD).

In brief, a pooler in EDB Postgres for Kubernetes is a deployment of PgBouncer pods that sits between your applications and a PostgreSQL service, for
example, the rw service. It creates a separate, scalable, configurable, and highly available database access layer.

Architecture

The following diagram highlights how introducing a database access layer based on PgBouncer changes the architecture of EDB Postgres for Kubernetes.
Instead of directly connecting to the PostgreSQL primary service, applications can connect to the equivalent service for PgBouncer. This ability enables
reuse of existing connections for faster performance and better resource management on the PostgreSQL side.

Quick start

This example helps to show how EDB Postgres for Kubernetes implements a PgBouncer pooler:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 315

https://www.pgbouncer.org/

ImportantImportant

The pooler name can't be the same as any cluster name in the same namespace.

This example creates a Pooler resource called pooler-example-rw that's strictly associated with the Postgres Cluster resource called
cluster-example . It points to the primary, identified by the read/write service (rw , therefore cluster-example-rw).

The Pooler resource must live in the same namespace as the Postgres cluster. It consists of a Kubernetes deployment of 3 pods running the latest stable
image of PgBouncer, configured with the session pooling mode and accepting up to 1000 connections each. The default pool size is 10 user/database
pairs toward PostgreSQL.

ImportantImportant

The Pooler resource sets only the * fallback database in PgBouncer. This setting means that that all parameters in the connection strings
passed from the client are relayed to the PostgreSQL server. For details, see "Section [databases]" in the PgBouncer documentation.

EDB Postgres for Kubernetes also creates a secret with the same name as the pooler containing the configuration files used with PgBouncer.

API referenceAPI reference

For details, see PgBouncerSpec in the API reference.

Pooler resource lifecycle

Pooler resources aren't cluster-managed resources. You create poolers manually when they're needed. You can also deploy multiple poolers per
PostgreSQL cluster.

What's important is that the life cycles of the Cluster and the Pooler resources are currently independent. Deleting the cluster doesn't imply the
deletion of the pooler, and vice versa.

ImportantImportant

Once you know how a pooler works, you have full freedom in terms of possible architectures. You can have clusters without poolers, clusters with
a single pooler, or clusters with several poolers, that is, one per application.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Pooler
metadata::
 name:: pooler-example-rw
spec::
 cluster::
 name:: cluster-
example

 instances:: 3
 type:: rw
 pgbouncer::
 poolMode:: session
 parameters::
 max_client_conn:: "1000"
 default_pool_size:: "10"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 316

https://quay.io/enterprisedb/pgbouncer
https://www.pgbouncer.org/config.html#pool-mode
https://www.pgbouncer.org/config.html#section-databases

ImportantImportant

When the operator is upgraded, the pooler pods will undergo a rolling upgrade. This is necessary to ensure that the instance manager within the
pooler pods is also upgraded.

Security

Any PgBouncer pooler is transparently integrated with EDB Postgres for Kubernetes support for in-transit encryption by way of TLS connections, both on
the client (application) and server (PostgreSQL) side of the pool.

Specifically, PgBouncer reuses the certificates of the PostgreSQL server. It also uses TLS client certificate authentication to connect to the PostgreSQL
server to run the auth_query for clients' password authentication (see Authentication).

Containers run as the pgbouncer system user, and access to the pgbouncer database is allowed only by way of local connections, through peer
authentication.

Certificates

By default, a PgBouncer pooler uses the same certificates that are used by the cluster. However, if you provide those certificates, the pooler accepts secrets
with the following formats:

1. Basic Auth
2. TLS
3. Opaque

In the Opaque case, it looks for the following specific keys that need to be used:

tls.crt
tls.key

So you can treat this secret as a TLS secret, and start from there.

Authentication

Password-based authentication is the only supported method for clients of PgBouncer in EDB Postgres for Kubernetes.

Internally, the implementation relies on PgBouncer's auth_user and auth_query options. Specifically, the operator:

Creates a standard user called cnp_pooler_pgbouncer in the PostgreSQL server
Creates the lookup function in the postgres database and grants execution privileges to the cnp_pooler_pgbouncer user (PoLA)
Issues a TLS certificate for this user
Sets cnp_pooler_pgbouncer as the auth_user
Configures PgBouncer to use the TLS certificate to authenticate cnp_pooler_pgbouncer against the PostgreSQL server
Removes all the above when it detects that a cluster doesn't have any pooler associated to it

ImportantImportant

If you specify your own secrets, the operator doesn't automatically integrate the pooler.

To manually integrate the pooler, if you specified your own secrets, you must run the following queries from inside your cluster.

First, you must create the role:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 317

Then, for each application database, grant the permission for cnp_pooler_pgbouncer to connect to it:

Finally, as a superuser connect in each application database, and then create the authentication function inside each of the application databases:

ImportantImportant

Given that user_search is a SECURITY DEFINER function, you need to create it through a role with SUPERUSER privileges, such as the
postgres user.

Pod templates

You can take advantage of pod templates specification in the template section of a Pooler resource. For details, see PoolerSpec in the API
reference.

Using templates, you can configure pods as you like, including fine control over affinity and anti-affinity rules for pods and nodes. By default, containers
use images from quay.io/enterprisedb/pgbouncer .

This example shows Pooler specifying `PodAntiAffinity``:

CREATECREATE ROLEROLE cnp_pooler_pgbouncer WITHWITH
LOGIN;

GRANTGRANT CONNECTCONNECT ONON DATABASEDATABASE { databasedatabase name here } TOTO
cnp_pooler_pgbouncer;

CREATECREATE OROR REPLACEREPLACE FUNCTIONFUNCTION publicpublic.user_search(uname TEXT)
 RETURNS TABLETABLE (usename name, passwd
text)
 LANGUAGE sql SECURITY DEFINERDEFINER
ASAS
 'SELECT usename, passwd FROM pg_catalog.pg_shadow WHERE
usename=$1;';

REVOKEREVOKE ALLALL ONON FUNCTIONFUNCTION publicpublic.user_search(text)
 FROMFROM publicpublic;

GRANTGRANT EXECUTEEXECUTE ONON FUNCTIONFUNCTION publicpublic.user_search(text)
 TOTO
cnp_pooler_pgbouncer;

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 318

NoteNote

Explicitly set .spec.template.spec.containers to [] when not modified, as it's a required field for a PodSpec . If
.spec.template.spec.containers isn't set, the Kubernetes api-server returns the following error when trying to apply the

manifest: error validating "pooler.yaml": error validating data:
ValidationError(Pooler.spec.template.spec): missing required field "containers"

This example sets resources and changes the used image:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Pooler
metadata::
 name:: pooler-example-rw
spec::
 cluster::
 name:: cluster-
example
 instances:: 3
 type:: rw

 template::
 metadata::
 labels::
 app::
pooler
 spec::
 containers:: [][]
 affinity::
 podAntiAffinity::
 requiredDuringSchedulingIgnoredDuringExecution::
 -- labelSelector::
 matchExpressions::
 -- key::
app
 operator:: In
 values::
 --
pooler
 topologyKey:: "kubernetes.io/hostname"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 319

Service Template

Sometimes, your pooler will require some different labels, annotations, or even change the type of the service, you can achieve that by using the
serviceTemplate field:

The operator by default adds a ServicePort with the following data:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Pooler
metadata::
 name:: pooler-example-rw
spec::
 cluster::
 name:: cluster-
example
 instances:: 3
 type:: rw

 template::
 metadata::
 labels::
 app::
pooler
 spec::
 containers::
 -- name:: pgbouncer
 image:: my-
pgbouncer:latest
 resources::
 requests::
 cpu:: "0.1"
 memory:: 100Mi
 limits::
 cpu:: "0.5"
 memory:: 500Mi

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Pooler
metadata::
 name:: pooler-example-rw
spec::
 cluster::
 name:: cluster-
example
 instances:: 3
 type:: rw
 serviceTemplate::
 metadata::
 labels::
 app::
pooler
 spec::
 type:: LoadBalancer
 pgbouncer::
 poolMode:: session
 parameters::
 max_client_conn:: "1000"
 default_pool_size:: "10"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 320

The operator by default adds a ServicePort with the following data:

 ports:
 - name: pgbouncer
 port: 5432
 protocol: TCP
 targetPort: pgbouncer

WarningWarning

Specifying a ServicePort with the name pgbouncer or the port 5432 will prevent the default ServicePort from being added. This
because ServicePort entries with the same name or port are not allowed on Kubernetes and result in errors.

High availability (HA)

Because of Kubernetes' deployments, you can configure your pooler to run on a single instance or over multiple pods. The exposed service makes sure that
your clients are randomly distributed over the available pods running PgBouncer, which then manages and reuses connections toward the underlying server
(if using the rw service) or servers (if using the ro service with multiple replicas).

WarningWarning

If your infrastructure spans multiple availability zones with high latency across them, be aware of network hops. Consider, for example, the case
of your application running in zone 2, connecting to PgBouncer running in zone 3, and pointing to the PostgreSQL primary in zone 1.

PgBouncer configuration options

The operator manages most of the configuration options for PgBouncer, allowing you to modify only a subset of them.

WarningWarning

You are responsible for correctly setting the value of each option, as the operator doesn't validate them.

These are the PgBouncer options you can customize, with links to the PgBouncer documentation for each parameter. Unless stated otherwise, the default
values are the ones directly set by PgBouncer.

application_name_add_host
autodb_idle_timeout
cancel_wait_timeout
client_idle_timeout
client_login_timeout
default_pool_size
disable_pqexec
dns_max_ttl
dns_nxdomain_ttl
idle_transaction_timeout
ignore_startup_parameters : to be appended to extra_float_digits,options - required by EDB Postgres for Kubernetes
listen_backlog
log_connections
log_disconnections
log_pooler_errors
log_stats : by default disabled (0), given that statistics are already collected by the Prometheus export as described in the "Monitoring" section

below
max_client_conn
max_db_connections

max_packet_size

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 321

https://www.pgbouncer.org/config.html
https://www.pgbouncer.org/config.html#application_name_add_host
https://www.pgbouncer.org/config.html#autodb_idle_timeout
https://www.pgbouncer.org/config.html#cancel_wait_timeout
https://www.pgbouncer.org/config.html#client_idle_timeout
https://www.pgbouncer.org/config.html#client_login_timeout
https://www.pgbouncer.org/config.html#default_pool_size
https://www.pgbouncer.org/config.html#disable_pqexec
https://www.pgbouncer.org/config.html#dns_max_ttl
https://www.pgbouncer.org/config.html#dns_nxdomain_ttl
https://www.pgbouncer.org/config.html#idle_transaction_timeout
https://www.pgbouncer.org/config.html#ignore_startup_parameters
https://www.pgbouncer.org/config.html#listen_backlog
https://www.pgbouncer.org/config.html#log_connections
https://www.pgbouncer.org/config.html#log_disconnections
https://www.pgbouncer.org/config.html#log_pooler_errors
https://www.pgbouncer.org/config.html#log_stats
https://www.pgbouncer.org/config.html#max_client_conn
https://www.pgbouncer.org/config.html#max_db_connections

max_packet_size
max_prepared_statements
max_user_connections
min_pool_size
pkt_buf
query_timeout
query_wait_timeout
reserve_pool_size
reserve_pool_timeout
sbuf_loopcnt
server_check_delay
server_check_query
server_connect_timeout
server_fast_close
server_idle_timeout
server_lifetime
server_login_retry
server_reset_query
server_reset_query_always
server_round_robin
server_tls_ciphers
server_tls_protocols
stats_period
suspend_timeout
tcp_defer_accept
tcp_keepalive
tcp_keepcnt
tcp_keepidle
tcp_keepintvl
tcp_user_timeout
tcp_socket_buffer
track_extra_parameters
verbose

Customizations of the PgBouncer configuration are written declaratively in the .spec.pgbouncer.parameters map.

The operator reacts to the changes in the pooler specification, and every PgBouncer instance reloads the updated configuration without disrupting the
service.

WarningWarning

Every PgBouncer pod has the same configuration, aligned with the parameters in the specification. A mistake in these parameters might disrupt
the operability of the whole pooler. The operator doesn't validate the value of any option.

Monitoring

The PgBouncer implementation of the Pooler comes with a default Prometheus exporter. It makes available several metrics having the
cnp_pgbouncer_ prefix by running:

SHOW LISTS (prefix: cnp_pgbouncer_lists)
SHOW POOLS (prefix: cnp_pgbouncer_pools)
SHOW STATS (prefix: cnp_pgbouncer_stats)

Like the EDB Postgres for Kubernetes instance, the exporter runs on port 9127 of each pod running PgBouncer and also provides metrics related to the
Go runtime (with the prefix go_*).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 322

https://www.pgbouncer.org/config.html#max_packet_size
https://www.pgbouncer.org/config.html#max_prepared_statements
https://www.pgbouncer.org/config.html#max_user_connections
https://www.pgbouncer.org/config.html#min_pool_size
https://www.pgbouncer.org/config.html#pkt_buf
https://www.pgbouncer.org/config.html#query_timeout
https://www.pgbouncer.org/config.html#query_wait_timeout
https://www.pgbouncer.org/config.html#reserve_pool_size
https://www.pgbouncer.org/config.html#reserve_pool_timeout
https://www.pgbouncer.org/config.html#sbuf_loopcnt
https://www.pgbouncer.org/config.html#server_check_delay
https://www.pgbouncer.org/config.html#server_check_query
https://www.pgbouncer.org/config.html#server_connect_timeout
https://www.pgbouncer.org/config.html#server_fast_close
https://www.pgbouncer.org/config.html#server_idle_timeout
https://www.pgbouncer.org/config.html#server_lifetime
https://www.pgbouncer.org/config.html#server_login_retry
https://www.pgbouncer.org/config.html#server_reset_query
https://www.pgbouncer.org/config.html#server_reset_query_always
https://www.pgbouncer.org/config.html#server_round_robin
https://www.pgbouncer.org/config.html#server_tls_ciphers
https://www.pgbouncer.org/config.html#server_tls_protocols
https://www.pgbouncer.org/config.html#stats_period
https://www.pgbouncer.org/config.html#suspend_timeout
https://www.pgbouncer.org/config.html#tcp_defer_accept
https://www.pgbouncer.org/config.html#tcp_keepalive
https://www.pgbouncer.org/config.html#tcp_keepcnt
https://www.pgbouncer.org/config.html#tcp_keepidle
https://www.pgbouncer.org/config.html#tcp_keepintvl
https://www.pgbouncer.org/config.html#tcp_user_timeout
https://www.pgbouncer.org/config.html#tcp_socket_buffer
https://www.pgbouncer.org/config.html#track_extra_parameters
https://www.pgbouncer.org/config.html#verbose

InfoInfo

You can inspect the exported metrics on a pod running PgBouncer. For instructions, see How to inspect the exported metrics. Make sure that you
use the correct IP and the 9127 port.

This example shows the output for cnp_pgbouncer metrics:

HELP cnp_pgbouncer_collection_duration_seconds Collection time duration in seconds
TYPE cnp_pgbouncer_collection_duration_seconds gauge
cnp_pgbouncer_collection_duration_seconds{collector="Collect.up"} 0.002338805
HELP cnp_pgbouncer_collection_errors_total Total errors occurred accessing PostgreSQL for metrics.
TYPE cnp_pgbouncer_collection_errors_total counter
cnp_pgbouncer_collection_errors_total{collector="sql: Scan error on column index 16, name
\"load_balance_hosts\": converting NULL to int is unsupported"} 5
HELP cnp_pgbouncer_collections_total Total number of times PostgreSQL was accessed for metrics.
TYPE cnp_pgbouncer_collections_total counter
cnp_pgbouncer_collections_total 5
HELP cnp_pgbouncer_last_collection_error 1 if the last collection ended with error, 0 otherwise.
TYPE cnp_pgbouncer_last_collection_error gauge
cnp_pgbouncer_last_collection_error 0
HELP cnp_pgbouncer_lists_databases Count of databases.
TYPE cnp_pgbouncer_lists_databases gauge
cnp_pgbouncer_lists_databases 1
HELP cnp_pgbouncer_lists_dns_names Count of DNS names in the cache.
TYPE cnp_pgbouncer_lists_dns_names gauge
cnp_pgbouncer_lists_dns_names 0
HELP cnp_pgbouncer_lists_dns_pending Not used.
TYPE cnp_pgbouncer_lists_dns_pending gauge
cnp_pgbouncer_lists_dns_pending 0
HELP cnp_pgbouncer_lists_dns_queries Count of in-flight DNS queries.
TYPE cnp_pgbouncer_lists_dns_queries gauge
cnp_pgbouncer_lists_dns_queries 0
HELP cnp_pgbouncer_lists_dns_zones Count of DNS zones in the cache.
TYPE cnp_pgbouncer_lists_dns_zones gauge
cnp_pgbouncer_lists_dns_zones 0
HELP cnp_pgbouncer_lists_free_clients Count of free clients.
TYPE cnp_pgbouncer_lists_free_clients gauge
cnp_pgbouncer_lists_free_clients 49
HELP cnp_pgbouncer_lists_free_servers Count of free servers.
TYPE cnp_pgbouncer_lists_free_servers gauge
cnp_pgbouncer_lists_free_servers 0
HELP cnp_pgbouncer_lists_login_clients Count of clients in login state.
TYPE cnp_pgbouncer_lists_login_clients gauge
cnp_pgbouncer_lists_login_clients 0
HELP cnp_pgbouncer_lists_pools Count of pools.
TYPE cnp_pgbouncer_lists_pools gauge
cnp_pgbouncer_lists_pools 1
HELP cnp_pgbouncer_lists_used_clients Count of used clients.
TYPE cnp_pgbouncer_lists_used_clients gauge
cnp_pgbouncer_lists_used_clients 1
HELP cnp_pgbouncer_lists_used_servers Count of used servers.
TYPE cnp_pgbouncer_lists_used_servers gauge
cnp_pgbouncer_lists_used_servers 0
HELP cnp_pgbouncer_lists_users Count of users.
TYPE cnp_pgbouncer_lists_users gauge
cnp_pgbouncer_lists_users 2
HELP cnp_pgbouncer_pools_cl_active Client connections that are linked to server connection and can
process queries.
TYPE cnp_pgbouncer_pools_cl_active gauge
cnp_pgbouncer_pools_cl_active{database="pgbouncer",user="pgbouncer"} 1
HELP cnp_pgbouncer_pools_cl_active_cancel_req Client connections that have forwarded query cancellations

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 323

to the server and are waiting for the server response.
TYPE cnp_pgbouncer_pools_cl_active_cancel_req gauge
cnp_pgbouncer_pools_cl_active_cancel_req{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_cl_cancel_req Client connections that have not forwarded query cancellations to
the server yet.
TYPE cnp_pgbouncer_pools_cl_cancel_req gauge
cnp_pgbouncer_pools_cl_cancel_req{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_cl_waiting Client connections that have sent queries but have not yet got a
server connection.
TYPE cnp_pgbouncer_pools_cl_waiting gauge
cnp_pgbouncer_pools_cl_waiting{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_cl_waiting_cancel_req Client connections that have not forwarded query
cancellations to the server yet.
TYPE cnp_pgbouncer_pools_cl_waiting_cancel_req gauge
cnp_pgbouncer_pools_cl_waiting_cancel_req{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_load_balance_hosts Number of hosts not load balancing between hosts
TYPE cnp_pgbouncer_pools_load_balance_hosts gauge
cnp_pgbouncer_pools_load_balance_hosts{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_maxwait How long the first (oldest) client in the queue has waited, in seconds.
If this starts increasing, then the current pool of servers does not handle requests quickly enough. The
reason may be either an overloaded server or just too small of a pool_size setting.
TYPE cnp_pgbouncer_pools_maxwait gauge
cnp_pgbouncer_pools_maxwait{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_maxwait_us Microsecond part of the maximum waiting time.
TYPE cnp_pgbouncer_pools_maxwait_us gauge
cnp_pgbouncer_pools_maxwait_us{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_pool_mode The pooling mode in use. 1 for session, 2 for transaction, 3 for
statement, -1 if unknown
TYPE cnp_pgbouncer_pools_pool_mode gauge
cnp_pgbouncer_pools_pool_mode{database="pgbouncer",user="pgbouncer"} 3
HELP cnp_pgbouncer_pools_sv_active Server connections that are linked to a client.
TYPE cnp_pgbouncer_pools_sv_active gauge
cnp_pgbouncer_pools_sv_active{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_sv_active_cancel Server connections that are currently forwarding a cancel
request
TYPE cnp_pgbouncer_pools_sv_active_cancel gauge
cnp_pgbouncer_pools_sv_active_cancel{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_sv_idle Server connections that are unused and immediately usable for client
queries.
TYPE cnp_pgbouncer_pools_sv_idle gauge
cnp_pgbouncer_pools_sv_idle{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_sv_login Server connections currently in the process of logging in.
TYPE cnp_pgbouncer_pools_sv_login gauge
cnp_pgbouncer_pools_sv_login{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_sv_tested Server connections that are currently running either
server_reset_query or server_check_query.
TYPE cnp_pgbouncer_pools_sv_tested gauge
cnp_pgbouncer_pools_sv_tested{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_sv_used Server connections that have been idle for more than server_check_delay,
so they need server_check_query to run on them before they can be used again.
TYPE cnp_pgbouncer_pools_sv_used gauge
cnp_pgbouncer_pools_sv_used{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_pools_sv_wait_cancels Servers that normally could become idle, but are waiting to do
so until all in-flight cancel requests have completed that were sent to cancel a query on this server.
TYPE cnp_pgbouncer_pools_sv_wait_cancels gauge
cnp_pgbouncer_pools_sv_wait_cancels{database="pgbouncer",user="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_bind_count Average number of prepared statements readied for execution by
clients and forwarded to PostgreSQL by pgbouncer.
TYPE cnp_pgbouncer_stats_avg_bind_count gauge
cnp_pgbouncer_stats_avg_bind_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_client_parse_count Average number of prepared statements created by clients.
TYPE cnp_pgbouncer_stats_avg_client_parse_count gauge

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 324

cnp_pgbouncer_stats_avg_client_parse_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_query_count Average queries per second in last stat period.
TYPE cnp_pgbouncer_stats_avg_query_count gauge
cnp_pgbouncer_stats_avg_query_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_query_time Average query duration, in microseconds.
TYPE cnp_pgbouncer_stats_avg_query_time gauge
cnp_pgbouncer_stats_avg_query_time{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_recv Average received (from clients) bytes per second.
TYPE cnp_pgbouncer_stats_avg_recv gauge
cnp_pgbouncer_stats_avg_recv{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_sent Average sent (to clients) bytes per second.
TYPE cnp_pgbouncer_stats_avg_sent gauge
cnp_pgbouncer_stats_avg_sent{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_server_parse_count Average number of prepared statements created by
pgbouncer on a server.
TYPE cnp_pgbouncer_stats_avg_server_parse_count gauge
cnp_pgbouncer_stats_avg_server_parse_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_wait_time Time spent by clients waiting for a server, in microseconds
(average per second).
TYPE cnp_pgbouncer_stats_avg_wait_time gauge
cnp_pgbouncer_stats_avg_wait_time{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_xact_count Average transactions per second in last stat period.
TYPE cnp_pgbouncer_stats_avg_xact_count gauge
cnp_pgbouncer_stats_avg_xact_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_avg_xact_time Average transaction duration, in microseconds.
TYPE cnp_pgbouncer_stats_avg_xact_time gauge
cnp_pgbouncer_stats_avg_xact_time{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_bind_count Total number of prepared statements readied for execution by
clients and forwarded to PostgreSQL by pgbouncer
TYPE cnp_pgbouncer_stats_total_bind_count gauge
cnp_pgbouncer_stats_total_bind_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_client_parse_count Total number of prepared statements created by clients.
TYPE cnp_pgbouncer_stats_total_client_parse_count gauge
cnp_pgbouncer_stats_total_client_parse_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_query_count Total number of SQL queries pooled by pgbouncer.
TYPE cnp_pgbouncer_stats_total_query_count gauge
cnp_pgbouncer_stats_total_query_count{database="pgbouncer"} 15
HELP cnp_pgbouncer_stats_total_query_time Total number of microseconds spent by pgbouncer when actively
connected to PostgreSQL, executing queries.
TYPE cnp_pgbouncer_stats_total_query_time gauge
cnp_pgbouncer_stats_total_query_time{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_received Total volume in bytes of network traffic received by pgbouncer.
TYPE cnp_pgbouncer_stats_total_received gauge
cnp_pgbouncer_stats_total_received{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_sent Total volume in bytes of network traffic sent by pgbouncer.
TYPE cnp_pgbouncer_stats_total_sent gauge
cnp_pgbouncer_stats_total_sent{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_server_parse_count Total number of prepared statements created by
pgbouncer on a server.
TYPE cnp_pgbouncer_stats_total_server_parse_count gauge
cnp_pgbouncer_stats_total_server_parse_count{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_wait_time Time spent by clients waiting for a server, in microseconds.
TYPE cnp_pgbouncer_stats_total_wait_time gauge
cnp_pgbouncer_stats_total_wait_time{database="pgbouncer"} 0
HELP cnp_pgbouncer_stats_total_xact_count Total number of SQL transactions pooled by pgbouncer.
TYPE cnp_pgbouncer_stats_total_xact_count gauge
cnp_pgbouncer_stats_total_xact_count{database="pgbouncer"} 15
HELP cnp_pgbouncer_stats_total_xact_time Total number of microseconds spent by pgbouncer when connected
to PostgreSQL in a transaction, either idle in transaction or executing queries.
TYPE cnp_pgbouncer_stats_total_xact_time gauge
cnp_pgbouncer_stats_total_xact_time{database="pgbouncer"} 0

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 325

InfoInfo

For a better understanding of the metrics please refer to the PgBouncer documentation.

As for clusters, a specific pooler can be monitored using the Prometheus operator's resource PodMonitor. A PodMonitor correctly pointing to a pooler
can be created by the operator by setting .spec.monitoring.enablePodMonitor to true in the Pooler resource. The default is false .

ImportantImportant

Any change to PodMonitor created automatically is overridden by the operator at the next reconciliation cycle. If you need to customize it,
you can do so as shown in the following example.

To deploy a PodMonitor for a specific pooler manually, you can define it as follows and change it as needed:

Logging

Logs are directly sent to standard output, in JSON format, like in the following example:

Pausing connections

The Pooler specification allows you to take advantage of PgBouncer's PAUSE and RESUME commands, using only declarative configuration. You can
ado this using the paused option, which by default is set to false . When set to true , the operator internally invokes the PAUSE command in
PgBouncer, which:

1. Closes all active connections toward the PostgreSQL server, after waiting for the queries to complete
2. Pauses any new connection coming from the client

When the paused option is reset to false , the operator invokes the RESUME command in PgBouncer, reopening the taps toward the PostgreSQL

apiVersion::
monitoring.coreos.com/v1
kind:: PodMonitor
metadata::
 name:: <POOLER_NAME>
spec::
 selector::
 matchLabels::
 k8s.enterprisedb.io/poolerName:: <POOLER_NAME>
 podMetricsEndpoints::
 -- port:: metrics

{
 "level": "info",
 "ts": SECONDS.MICROSECONDSSECONDS.MICROSECONDS,
 "msg": "record",
 "pipe": "stderr",
 "record": {
 "timestamp": "YYYY-MM-DD HH:MM:SS.MS
UTC",
 "pid": "<PID>",
 "level": "LOG",
 "msg": "kernel file descriptor limit: 1048576 (hard: 1048576); max_client_conn: 100, max expected fd
use: 112"
 }
}

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 326

https://github.com/prometheus-operator/prometheus-operator
https://github.com/prometheus-operator/prometheus-operator/blob/v0.47.1/Documentation/api.md#podmonitor

When the paused option is reset to false , the operator invokes the RESUME command in PgBouncer, reopening the taps toward the PostgreSQL
service defined in the Pooler resource.

PAUSEPAUSE

For more information, see PAUSE in the PgBouncer documentation.

ImportantImportant

In future versions, the switchover operation will be fully integrated with the PgBouncer pooler and take advantage of the PAUSE / RESUME
features to reduce the perceived downtime by client applications. Currently, you can achieve the same results by setting the paused attribute
to true , issuing the switchover command through the cnp plugin, and then restoring the paused attribute to false .

Limitations

Single PostgreSQL cluster

The current implementation of the pooler is designed to work as part of a specific EDB Postgres for Kubernetes cluster (a service). It isn't currently possible
to create a pooler that spans multiple clusters.

Controlled configurability

EDB Postgres for Kubernetes transparently manages several configuration options that are used for the PgBouncer layer to communicate with PostgreSQL.
Such options aren't configurable from outside and include TLS certificates, authentication settings, the databases section, and the users section.
Also, considering the specific use case for the single PostgreSQL cluster, the adopted criteria is to explicitly list the options that can be configured by users.

NoteNote

The adopted solution likely addresses the majority of use cases. It leaves room for the future implementation of a separate operator for
PgBouncer to complete the gamma with more advanced and customized scenarios.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 327

https://www.pgbouncer.org/usage.html#pause-db

36 Replica clusters

A replica cluster is a EDB Postgres for Kubernetes Cluster resource designed to replicate data from another PostgreSQL instance, ideally also managed
by EDB Postgres for Kubernetes.

Typically, a replica cluster is deployed in a different Kubernetes cluster in another region. These clusters can be configured to perform cascading
replication and can rely on object stores for data replication from the source, as detailed further down.

There are primarily two use cases for replica clusters:

1. Disaster Recovery and High AvailabilityDisaster Recovery and High Availability: Enhance disaster recovery and, to some extent, high availability of a EDB Postgres for Kubernetes cluster
across different Kubernetes clusters, typically located in different regions. In EDB Postgres for Kubernetes terms, this is known as a "Distributed
Topology".

2. Read-Only WorkloadsRead-Only Workloads: Create standalone replicas of a PostgreSQL cluster for purposes such as reporting or Online Analytical Processing (OLAP).
These replicas are primarily for read-only workloads. In EDB Postgres for Kubernetes terms, this is referred to as a "Standalone Replica Cluster".

For example, the diagram below — taken from the "Architecture" section — illustrates a distributed PostgreSQL topology spanning two Kubernetes clusters,
with a symmetric replica cluster primarily serving disaster recovery purposes.

Basic Concepts

EDB Postgres for Kubernetes builds on the PostgreSQL replication framework, allowing you to create and synchronize a PostgreSQL cluster from an
existing source cluster using the replica cluster feature — described in this section. The source can be a primary cluster or another replica cluster
(cascading replication).

About PostgreSQL Roles

A replica cluster operates in continuous recovery mode, meaning no changes to the database, including the catalog and global objects like roles or
databases, are permitted. These changes are deferred until the Cluster transitions to primary. During this phase, global objects such as roles remain as
defined in the source cluster. EDB Postgres for Kubernetes applies any local redefinitions once the cluster is promoted.

If you are not planning to promote the cluster (e.g., for read-only workloads) or if you intend to detach completely from the source cluster once the replica
cluster is promoted, you don't need to take any action. This is normally the case of the "Standalone Replica Cluster".

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 328

If you are planning to promote the cluster at some point, EDB Postgres for Kubernetes will manage the following roles and passwords when transitioning
from replica cluster to primary:

the application user
the superuser (if you are using it)
any role defined using the declarative interface

If your intention is to seamlessly ensure that the above roles and passwords don't change, you need to define the necessary secrets for the above in each
Cluster . This is normally the case of the "Distributed Topology".

Bootstrapping a Replica Cluster

The first step is to bootstrap the replica cluster using one of the following methods:

Streaming replicationStreaming replication via pg_basebackup
Recovery from a volume snapshotRecovery from a volume snapshot
Recovery from a Barman Cloud backupRecovery from a Barman Cloud backup in an object store

For detailed instructions on cloning a PostgreSQL server using pg_basebackup (streaming) or recovery (volume snapshot or object store), refer to the
"Bootstrap" section.

Configuring Replication

Once the base backup for the replica cluster is available, you need to define how changes will be replicated from the origin using PostgreSQL continuous
recovery. There are three main options:

1. Streaming ReplicationStreaming Replication: Set up streaming replication between the replica cluster and the source. This method requires configuring network
connections and implementing appropriate administrative and security measures to ensure seamless data transfer.

2. WAL ArchiveWAL Archive: Use the WAL (Write-Ahead Logging) archive stored in an object store. WAL files are regularly transferred from the source cluster to the
object store, from where a CNP-I plugin like Barman Cloud retrieves them for the replica cluster via the restore_command .

3. Hybrid ApproachHybrid Approach: Combine both streaming replication and WAL archive methods. PostgreSQL can manage and switch between these two
approaches as needed to ensure data consistency and availability.

Defining an External Cluster

When configuring the external cluster, you have the following options:

plugin section section:

Enables bootstrapping the replica cluster using a CNPG-I plugin that support the restore_job and the wal protocols.
EDB Postgres for Kubernetes supports the Barman Cloud Plugin to allow bootstrapping the replica cluster from an object store.

connectionParameters section section:

Enables bootstrapping the replica cluster via streaming replication using the pg_basebackup section.
EDB Postgres for Kubernetes automatically sets the primary_conninfo option in the designated primary instance, initiating a WAL
receiver process to connect to the source cluster and receive data.

You still have access to the barmanObjectStore section section, although deprecated:

Enables use of the WAL archive, with EDB Postgres for Kubernetes automatically setting the restore_command in the designated primary
instance.
Allows bootstrapping the replica cluster from an object store using the recovery section if volume snapshots are not feasible.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 329

https://cloudnative-pg.io/plugin-barman-cloud/
https://github.com/cloudnative-pg/cnpg-i
https://github.com/cloudnative-pg/cnpg-i/blob/main/docs/protocol.md#restore_job-proto
https://github.com/cloudnative-pg/cnpg-i/blob/main/docs/protocol.md#wal-proto
https://cloudnative-pg.io/plugin-barman-cloud/docs/usage/#restoring-a-cluster

Backup and Symmetric Architectures

The replica cluster can perform backups to a reserved object store from the designated primary, supporting symmetric architectures in a distributed
environment. This architectural choice is crucial as it ensures the cluster is prepared for promotion during a controlled data center switchover or a failover
following an unexpected event.

Distributed Architecture Flexibility

You have the flexibility to design your preferred distributed architecture for a PostgreSQL database, choosing from:

Private CloudPrivate Cloud: Spanning multiple Kubernetes clusters in different data centers.
Public CloudPublic Cloud: Spanning multiple Kubernetes clusters in different regions.
Hybrid CloudHybrid Cloud: Combining private and public clouds.
Multi-CloudMulti-Cloud: Spanning multiple Kubernetes clusters across different regions and Cloud Service Providers.

Setting Up a Replica Cluster

To set up a replica cluster from a source cluster, follow these steps to create a cluster YAML file and configure it accordingly:

1. Define External ClustersDefine External Clusters:

In the externalClusters section, specify the replica cluster.
For a distributed PostgreSQL topology aimed at disaster recovery (DR) and high availability (HA), this section should be defined for every
PostgreSQL cluster in the distributed database.

2. Bootstrap the Replica ClusterBootstrap the Replica Cluster:

Streaming BootstrapStreaming Bootstrap: Use the pg_basebackup section for bootstrapping via streaming replication.
Snapshot/Object Store BootstrapSnapshot/Object Store Bootstrap: Use the recovery section to bootstrap from a volume snapshot or an object store.

3. Continuous Recovery StrategyContinuous Recovery Strategy: Define this in the .spec.replica stanza:

Distributed TopologyDistributed Topology: Configure using the primary , source , and self fields along with the distributed topology defined in
externalClusters . This allows EDB Postgres for Kubernetes to declaratively control the demotion of a primary cluster and the

subsequent promotion of a replica cluster using a promotion token.
Standalone Replica ClusterStandalone Replica Cluster: Enable continuous recovery using the enabled option and set the source field to point to an
externalClusters name. This configuration is suitable for creating replicas primarily intended for read-only workloads.

Both the Distributed Topology and the Standalone Replica Cluster strategies for continuous recovery are thoroughly explained below.

Distributed Topology

Planning for a Distributed PostgreSQL Database

As Dwight Eisenhower famously said, "Planning is everything", and this holds true for designing PostgreSQL architectures in Kubernetes.

First, conceptualize your distributed topology on paper, and then translate it into a EDB Postgres for Kubernetes API configuration. This configuration
primarily involves:

The externalClusters section, which must be included in every Cluster definition within your distributed PostgreSQL setup.
The .spec.replica stanza, specifically the primary , source , and (optionally) self fields.

For example, suppose you want to deploy a PostgreSQL cluster distributed across two Kubernetes clusters located in Southern Europe and Central Europe.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 330

In this scenario, assume you have EDB Postgres for Kubernetes installed in the Southern Europe Kubernetes cluster, with a PostgreSQL Cluster named
cluster-eu-south acting as the primary. This cluster has continuous backup configured with a local object store. This object store is also accessible

by the PostgreSQL Cluster named cluster-eu-central , installed in the Central European Kubernetes cluster. Initially, cluster-eu-
central functions as a replica cluster. Following a symmetric approach, it also has a local object store for continuous backup, which needs to be read by
cluster-eu-south .

In this example, recovery is performed solely through WAL shipping, without any streaming replication between the two clusters. However, you can
configure the setup to use streaming replication alone or adopt a hybrid approach—streaming replication with WAL shipping as a fallback—as described in
the “Configuring replication” section.

Here’s how you would configure the externalClusters section for both Cluster resources, relying on Barman Cloud Plugin for the object store:

The .spec.replica stanza for the cluster-eu-south PostgreSQL primary Cluster should be configured as follows:

Meanwhile, the .spec.replica stanza for the cluster-eu-central PostgreSQL replica Cluster should be configured as:

In this configuration, when the primary field matches the name of the Cluster resource (or .spec.replica.self if a different one is used), the
current cluster is considered the primary in the distributed topology. Otherwise, it is set as a replica from the source (in this case, using the Barman
object store).

This setup allows you to efficiently manage a distributed PostgreSQL architecture across multiple Kubernetes clusters, ensuring both high availability and
disaster recovery through controlled switchover of a primary PostgreSQL cluster using declarative configuration.

Controlled switchover in a distributed topology is a two-step process involving:

Demotion of a primary cluster to a replica cluster

Distributed topology
configuration
externalClusters::
 -- name:: cluster-eu-
south
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: cluster-eu-
south
 serverName:: cluster-eu-
south
 -- name:: cluster-eu-
central
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: cluster-eu-
central
 serverName:: cluster-eu-
central

replica::
 primary:: cluster-eu-
south
 source:: cluster-eu-
central

replica::
 primary:: cluster-eu-
south
 source:: cluster-eu-
south

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 331

Promotion of a replica cluster to a primary cluster

These processes are described in the next sections.

ImportantImportant

Before you proceed, ensure you review the "About PostgreSQL Roles" section above and use identical role definitions, including secrets, in all
Cluster objects participating in the distributed topology.

Demoting a Primary to a Replica Cluster

EDB Postgres for Kubernetes provides the functionality to demote a primary cluster to a replica cluster. This action is typically planned when transitioning
the primary role from one data center to another. The process involves demoting the current primary cluster (e.g., cluster-eu-south) to a replica
cluster and subsequently promoting the designated replica cluster (e.g., cluster-eu-central) to primary when fully synchronized.

Provided you have defined an external cluster in the current primary Cluster resource that points to the replica cluster that's been selected to become
the new primary, all you need to do is change the primary field as follows:

When the primary PostgreSQL cluster is demoted, write operations are no longer possible. EDB Postgres for Kubernetes then:

1. Archives the WAL file containing the shutdown checkpoint as a .partial file in the WAL archive.

2. Generates a demotionToken in the status, a base64-encoded JSON structure containing relevant information from pg_controldata such as
the system identifier, the timestamp, timeline ID, REDO location, and REDO WAL file of the latest checkpoint.

The first step is necessary to demote/promote using solely the WAL archive to feed the continuous recovery process (without streaming replication).

The second step, generation of the .status.demotionToken , will ensure a smooth demotion/promotion process, without any data loss and without
rebuilding the former primary.

At this stage, the former primary has transitioned to a replica cluster, awaiting WAL data from the new global primary: cluster-eu-central .

To proceed with promoting the other cluster, you need to retrieve the demotionToken from cluster-eu-south using the following command:

You can obtain the demotionToken using the cnp plugin by checking the cluster's status. The token is listed under the Demotion token section.

NoteNote

The demotionToken obtained from cluster-eu-south will serve as the promotionToken for cluster-eu-central .

You can verify the role change using the cnp plugin, checking the status of the cluster:

kubectl cnp status cluster-eu-south

replica::
 primary:: cluster-eu-
central
 source:: cluster-eu-
central

kubectl get cluster cluster-eu-south
\
 -o jsonpath='{.status.demotionToken}'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 332

Promoting a Replica to a Primary Cluster

To promote a PostgreSQL replica cluster (e.g., cluster-eu-central) to a primary cluster and make the designated primary an actual primary
instance, you need to perform the following steps simultaneously:

1. Set the .spec.replica.primary to the name of the current replica cluster to be promoted (e.g., cluster-eu-central).
2. Set the .spec.replica.promotionToken with the value obtained from the former primary cluster (refer to "Demoting a Primary to a Replica

Cluster").

The updated replica section in cluster-eu-central 's spec should look like this:

WarningWarning

It is crucial to apply the changes to the primary and promotionToken fields simultaneously. If the promotion token is omitted, a failover
will be triggered, necessitating a rebuild of the former primary.

After making these adjustments, EDB Postgres for Kubernetes will initiate the promotion of the replica cluster to a primary cluster. Initially, EDB Postgres
for Kubernetes will wait for the designated primary cluster to replicate all Write-Ahead Logging (WAL) information up to the specified Log Sequence
Number (LSN) contained in the token. Once this target is achieved, the promotion process will commence. The new primary cluster will switch timelines,
archive the history file and new WAL, thereby unblocking the replication process in the cluster-eu-south cluster, which will then operate as a
replica.

To verify the role change, use the cnp plugin to check the status of the cluster:

kubectl cnp status cluster-eu-central

This command will provide you with the current status of cluster-eu-central , confirming its promotion to primary.

By following these steps, you ensure a smooth and controlled promotion process, minimizing disruption and maintaining data integrity across your
PostgreSQL clusters.

Standalone Replica Clusters

ImportantImportant

Standalone Replica Clusters were previously known as Replica Clusters before the introduction of the Distributed Topology strategy in EDB
Postgres for Kubernetes 1.24.

In EDB Postgres for Kubernetes, a Standalone Replica Cluster is a PostgreSQL cluster in continuous recovery with the following configurations:

.spec.replica.enabled set to true
A physical replication source defined via the .spec.replica.source field, pointing to an externalClusters name

When .spec.replica.enabled is set to false , the replica cluster exits continuous recovery mode and becomes a primary cluster, completely
detached from the original source.

replica::
 primary:: cluster-eu-
central
 promotionToken:: <PROMOTION_TOKEN>
 source:: cluster-eu-
south

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 333

WarningWarning

Disabling replication is an irreversibleirreversible operation. Once replication is disabled and the designated primary is promoted to primary, the replica
cluster and the source cluster become two independent clusters definitively.

ImportantImportant

Standalone replica clusters are suitable for several use cases, primarily involving read-only workloads. If you are planning to setup a disaster
recovery solution, look into "Distributed Topology" above.

Main Differences with Distributed Topology

Although Standalone Replica Clusters can be used for disaster recovery purposes, they differ from the "Distributed Topology" strategy in several key ways:

Lack of Distributed Database ConceptLack of Distributed Database Concept: Standalone Replica Clusters do not support the concept of a distributed database, whether in simple forms
(two clusters) or more complex configurations (e.g., three clusters in a circular topology).
No Global Primary ClusterNo Global Primary Cluster: There is no notion of a global primary cluster in Standalone Replica Clusters.
No Controlled SwitchoverNo Controlled Switchover: A Standalone Replica Cluster can only be promoted to primary. The former primary cluster must be re-cloned, as
controlled switchover is not possible.

Failover is identical in both strategies, requiring the former primary to be re-cloned if it ever comes back up.

Example of Standalone Replica Cluster using pg_basebackup

This first examplefirst example defines a standalone replica cluster using streaming replication in both bootstrap and continuous recovery. The replica cluster connects
to the source cluster using TLS authentication.

You can check the sample YAML in the samples/ subdirectory.

Note the bootstrap and replica sections pointing to the source cluster.

The previous configuration assumes that the application database and its owning user are set to the default, app . If the PostgreSQL cluster being restored
uses different names, you must specify them as documented in Configure the application database. You should also consider copying over the application
user secret from the original cluster and keep it synchronized with the source. See "About PostgreSQL Roles" for more details.

In the externalClusters section, remember to use the right namespace for the host in the connectionParameters sub-section. The -
replication and -ca secrets should have been copied over if necessary, in case the replica cluster is in a separate namespace.

 bootstrap::
 pg_basebackup::
 source:: cluster-
example

 replica::
 enabled:: true
 source:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 334

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-replica-streaming.yaml

Example of Standalone Replica Cluster from an object store

The second examplesecond example defines a replica cluster that bootstraps from an object store using the recovery section and continuous recovery using both
streaming replication and the given object store. For streaming replication, the replica cluster connects to the source cluster using basic authentication.

You can check the sample YAML for it in the samples/ subdirectory.

Note the bootstrap and replica sections pointing to the source cluster.

The previous configuration assumes that the application database and its owning user are set to the default, app . If the PostgreSQL cluster being restored
uses different names, you must specify them as documented in Configure the application database. You should also consider copying over the application
user secret from the original cluster and keep it synchronized with the source. See "About PostgreSQL Roles" for more details.

In the externalClusters section, take care to use the right namespace in the endpointURL and the connectionParameters.host . And do
ensure that the necessary secrets have been copied if necessary, and that a backup of the source cluster has been created already.

 externalClusters::
 -- name:: <MAIN-
CLUSTER>
 connectionParameters::
 host:: <MAIN-CLUSTER>-rw.
<NAMESPACE>.svc
 user:: streaming_replica
 sslmode:: verify-full
 dbname::
postgres
 sslKey::
 name:: <MAIN-CLUSTER>-
replication
 key:: tls.key
 sslCert::
 name:: <MAIN-CLUSTER>-
replication
 key:: tls.crt
 sslRootCert::
 name:: <MAIN-CLUSTER>-
ca
 key::
ca.crt

 bootstrap::
 recovery::
 source:: cluster-
example

 replica::
 enabled:: true
 source:: cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 335

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-replica-from-backup-simple.yaml

NoteNote

To use streaming replication between the source cluster and the replica cluster, we need to make sure there is network connectivity between the
two clusters, and that all the necessary secrets which hold passwords or certificates are properly created in advance.

Example using a Volume Snapshot

If you use volume snapshots and your storage class provides snapshots cross-cluster availability, you can leverage that to bootstrap a replica cluster
through a volume snapshot of the source cluster.

The third examplethird example defines a replica cluster that bootstraps from a volume snapshot using the recovery section. It uses streaming replication (via basic
authentication) and the object store to fetch the WAL files.

You can check the sample YAML for it in the samples/ subdirectory.

The example assumes that the application database and its owning user are set to the default, app . If the PostgreSQL cluster being restored uses different
names, you must specify them as documented in Configure the application database. You should also consider copying over the application user secret from
the original cluster and keep it synchronized with the source. See "About PostgreSQL Roles" for more details.

Delayed replicas

EDB Postgres for Kubernetes supports the creation of delayed replicasdelayed replicas through the .spec.replica.minApplyDelay option, leveraging
PostgreSQL's recovery_min_apply_delay .

Delayed replicas are designed to intentionally lag behind the primary database by a specified amount of time. This delay is configurable using the
.spec.replica.minApplyDelay option, which maps to the underlying recovery_min_apply_delay parameter in PostgreSQL.

The primary objective of delayed replicas is to mitigate the impact of unintended SQL statement executions on the primary database. This is especially
useful in scenarios where operations such as UPDATE or DELETE are performed without a proper WHERE clause.

To configure a delay in a replica cluster, adjust the .spec.replica.minApplyDelay option. This parameter determines how much time the replicas

 externalClusters::
 -- name:: <MAIN-
CLUSTER>
 # Example with Barman Cloud
Plugin
 plugin::
 name:: barman-cloud.cloudnative-pg.io
 parameters::
 barmanObjectName:: <MAIN-
CLUSTER>
 serverName:: <MAIN-
CLUSTER>

…
 connectionParameters::
 host:: <MAIN-CLUSTER>-
rw.default.svc
 user::
postgres
 dbname::
postgres
 password::
 name:: <MAIN-CLUSTER>-
superuser
 key::
password

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 336

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-replica-from-volume-snapshot.yaml
https://www.postgresql.org/docs/current/runtime-config-replication.html#GUC-RECOVERY-MIN-APPLY-DELAY

To configure a delay in a replica cluster, adjust the .spec.replica.minApplyDelay option. This parameter determines how much time the replicas
will lag behind the primary. For example:

The above example helps safeguard against accidental data modifications by providing a buffer period of 8 hours to detect and correct issues before they
propagate to the replicas.

Monitor and adjust the delay as needed based on your recovery time objectives and the potential impact of unintended primary database operations.

The main use cases of delayed replicas can be summarized into:

1. mitigating human errors: reduce the risk of data corruption or loss resulting from unintentional SQL operations on the primary database

2. recovery time optimization: facilitate quicker recovery from unintended changes by having a delayed replica that allows you to identify and rectify
issues before changes are applied to other replicas.

3. enhanced data protection: safeguard critical data by introducing a time buffer that provides an opportunity to intervene and prevent the propagation
of undesirable changes.

WarningWarning

The minApplyDelay option of delayed replicas cannot be used in conjunction with promotionToken .

By integrating delayed replicas into your replication strategy, you can enhance the resilience and data protection capabilities of your PostgreSQL
environment. Adjust the delay duration based on your specific needs and the criticality of your data.

ImportantImportant

Always measure your goals. Depending on your environment, it might be more efficient to rely on volume snapshot-based recovery for faster
outcomes. Evaluate and choose the approach that best aligns with your unique requirements and infrastructure.

 #
...
 replica::
 enabled:: true
 source:: cluster-
example
 # Enforce a delay of 8
hours
 minApplyDelay:: '8h'
 #
...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 337

37 Kubernetes Upgrade and Maintenance

Maintaining an up-to-date Kubernetes cluster is crucial for ensuring optimal performance and security, particularly for self-managed clusters, especially
those running on bare metal infrastructure. Regular updates help address technical debt and mitigate business risks, despite the controlled downtimes
associated with temporarily removing a node from the cluster for maintenance purposes. For further insights on embracing risk in operations, refer to the
"Embracing Risk" chapter from the Site Reliability Engineering book.

Importance of Regular Updates

Updating Kubernetes involves planning and executing maintenance tasks, such as applying security updates to underlying Linux servers, replacing
malfunctioning hardware components, or upgrading the cluster to the latest Kubernetes version. These activities are essential for maintaining a robust and
secure infrastructure.

Maintenance Operations in a Cluster

Typically, maintenance operations are carried out on one node at a time, following a structured process:

1. eviction of workloads (drain): workloads are gracefully moved away from the node to be updated, ensuring a smooth transition.
2. performing the operation: the actual maintenance operation, such as a system update or hardware replacement, is executed.
3. rejoining the node to the cluster (uncordon): the updated node is reintegrated into the cluster, ready to resume its responsibilities.

This process requires either stopping workloads for the entire upgrade duration or migrating them to other nodes in the cluster.

Temporary PostgreSQL Cluster Degradation

While the standard approach ensures service reliability and leverages Kubernetes' self-healing capabilities, there are scenarios where operating with a
temporarily degraded cluster may be acceptable. This is particularly relevant for PostgreSQL clusters relying on node-local storagenode-local storage, where the storage is
local to the Kubernetes worker node running the PostgreSQL database. Node-local storage, or simply local storage, is employed to enhance performance.

NoteNote

If your database files reside on shared storage accessible over the network, the default self-healing behavior of the operator can efficiently
handle scenarios where volumes are reused by pods on different nodes after a drain operation. In such cases, you can skip the remaining sections
of this document.

Pod Disruption Budgets

By default, EDB Postgres for Kubernetes safeguards Postgres cluster operations. If a node is to be drained and contains a cluster's primary instance, a
switchover happens ahead of the drain. Once the instance in the node is downgraded to replica, the draining can resume. For single-instance clusters, a
switchover is not possible, so EDB Postgres for Kubernetes will prevent draining the node where the instance is housed. Additionally, in clusters with 3 or
more instances, EDB Postgres for Kubernetes guarantees that only one replica at a time is gracefully shut down during a drain operation.

Each PostgreSQL Cluster is equipped with two associated PodDisruptionBudget resources - you can easily confirm it with the kubectl get
pdb command.

Our recommendation is to leave pod disruption budgets enabled for every production Postgres cluster. This can be effortlessly managed by toggling the
.spec.enablePDB option, as detailed in the API reference.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 338

https://landing.google.com/sre/sre-book/chapters/embracing-risk/
https://kubernetes.io/docs/tasks/administer-cluster/kubeadm/kubeadm-upgrade/

PostgreSQL Clusters used for Development or Testing

For PostgreSQL clusters used for development purposes, often consisting of a single instance, it is essential to disable pod disruption budgets. Failure to do
so will prevent the node hosting that cluster from being drained.

The following example illustrates how to disable pod disruption budgets for a 1-instance development cluster:

This configuration ensures smoother maintenance procedures without restrictions on draining the node during development activities.

Node Maintenance Window

ImportantImportant

While EDB Postgres for Kubernetes will continue supporting the node maintenance window, it is currently recommended to transition to direct
control of pod disruption budgets, as explained in the previous section. This section is retained mainly for backward compatibility.

Prior to release 1.23, EDB Postgres for Kubernetes had just one declarative mechanism to manage Kubernetes upgrades when dealing with local storage:
you had to temporarily put the cluster in maintenance modemaintenance mode through the nodeMaintenanceWindow option to avoid standard self-healing procedures
to kick in, while, for example, enlarging the partition on the physical node or updating the node itself.

WarningWarning

Limit the duration of the maintenance window to the shortest amount of time possible. In this phase, some of the expected behaviors of
Kubernetes are either disabled or running with some limitations, including self-healing, rolling updates, and Pod disruption budget.

The nodeMaintenanceWindow option of the cluster has two further settings:

inProgress : Boolean value that states if the maintenance window for the nodes is currently in progress or not. By default, it is set to off . During the
maintenance window, the reusePVC option below is evaluated by the operator.

reusePVC : Boolean value that defines if an existing PVC is reused or not during the maintenance operation. By default, it is set to on . When enabledenabled,
Kubernetes waits for the node to come up again and then reuses the existing PVC; the PodDisruptionBudget policy is temporarily removed. When
disableddisabled, Kubernetes forces the recreation of the Pod on a different node with a new PVC by relying on PostgreSQL's physical streaming replication, then
destroys the old PVC together with the Pod. This scenario is generally not recommended unless the database's size is small, and re-cloning the new
PostgreSQL instance takes shorter than waiting. This behavior does notnot apply to clusters with only one instance and reusePVC disabled: see section below.

NoteNote

When performing the kubectl drain command, you will need to add the --delete-emptydir-data option. Don't be afraid: it refers to
another volume internally used by the operator - not the PostgreSQL data directory.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name::
dev
spec::
 instances:: 1
 enablePDB:: false

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 339

ImportantImportant

PodDisruptionBudget management can be disabled by setting the .spec.enablePDB field to false . In that case, the operator won't
create PodDisruptionBudgets and will delete them if they were previously created.

Single instance clusters with reusePVC set to false

ImportantImportant

We recommend to always create clusters with more than one instance in order to guarantee high availability.

Deleting the only PostgreSQL instance in a single instance cluster with reusePVC set to false would imply all data being lost, therefore we prevent
users from draining nodes such instances might be running on, even in maintenance mode.

However, in case maintenance is required for such a node you have two options:

1. Enable reusePVC , accepting the downtime
2. Replicate the instance on a different node and switch over the primary

As long as a database service downtime is acceptable for your environment, draining the node is as simple as setting the nodeMaintenanceWindow to
inProgress: true and reusePVC: true . This will allow the instance to be deleted and recreated as soon as the original PVC is available (e.g.

with node local storage, as soon as the node is back up).

Otherwise you will have to scale up the cluster, creating a new instance on a different node and promoting the new instance to primary in order to shut
down the original one on the node undergoing maintenance. The only downtime in this case will be the duration of the switchover.

A possible approach could be:

1. Cordon the node on which the current instance is running.
2. Scale up the cluster to 2 instances, could take some time depending on the database size.
3. As soon as the new instance is running, the operator will automatically perform a switchover given that the current primary is running on a cordoned

node.
4. Scale back down the cluster to a single instance, this will delete the old instance
5. The old primary's node can now be drained successfully, while leaving the new primary running on a new node.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 340

38 EDB Postgres for Kubernetes Plugin

EDB Postgres for Kubernetes provides a plugin for kubectl to manage a cluster in Kubernetes. The plugin also works with oc in an OpenShift
environment.

Install

You can install the cnp plugin using a variety of methods.

NoteNote

For air-gapped systems, installation via package managers, using previously downloaded files, may be a good option.

Via the installation script

Using the Debian or RedHat packages

In the releases section of the GitHub repository, you can navigate to any release of interest (pick the same or newer release than your EDB Postgres for
Kubernetes operator), and in it you will find an AssetsAssets section. In that section are pre-built packages for a variety of systems. As a result, you can follow
standard practices and instructions to install them in your systems.

Debian packages

For example, let's install the 1.26.0 release of the plugin, for an Intel based 64 bit server. First, we download the right .deb file.

Then, with superuser privileges, install from the local file using dpkg :

$ sudo dpkg -i kube-plugin.deb
Selecting previously unselected package cnp.
(Reading database ... 6688 files and directories currently installed.)
Preparing to unpack kube-plugin.deb ...
Unpacking kubectl-cnp (1.26.0) ...
Setting up kubectl-cnp (1.26.0) ...

RPM packages

As in the example for .rpm packages, let's install the 1.26.0 release for an Intel 64 bit machine. Note the --output flag to provide a file name.

curl -sSfL \
 https://github.com/EnterpriseDB/kubectl-cnp/raw/main/install.sh || \
 sudo sh -s -- -b
/usr/local/bin

wget https://github.com/EnterpriseDB/kubectl-cnp/releases/download/v1.26.0/kubectl-
cnp_1.26.0_linux_x86_64.deb \
 --output-document kube-plugin.deb

curl -L https://github.com/EnterpriseDB/kubectl-cnp/releases/download/v1.26.0/kubectl-
cnp_1.26.0_linux_x86_64.rpm \
 --output kube-plugin.rpm

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 341

https://github.com/EnterpriseDB/kubectl-cnp/releases

Then, with superuser privileges, install with yum , and you're ready to use:

$ sudo yum --disablerepo=* localinstall kube-plugin.rpm
Failed to set locale, defaulting to C.UTF-8
Dependencies resolved.
==
 Package Architecture Version Repository Size
==
Installing:
 cnp x86_64 1.26.0-1 @commandline 20 M

Transaction Summary
==
Install 1 Package

Total size: 20 M
Installed size: 78 M
Is this ok [y/N]: y

Supported Architectures

EDB Postgres for Kubernetes Plugin is currently built for the following operating system and architectures:

Linux
amd64
arm 5/6/7
arm64
s390x
ppc64le

macOS
amd64
arm64

Windows
386
amd64
arm 5/6/7
arm64

Configuring auto-completion

To configure auto-completion for the plugin, a helper shell script needs to be installed into your current PATH. Assuming the latter contains
/usr/local/bin , this can be done with the following commands:

cat > kubectl_complete-cnp <<EOF
#!/usr/bin/env sh

Call the __complete command passing it all arguments
kubectl cnp __complete "\$@"
EOF

chmod +x kubectl_complete-cnp

Important: the following command may require superuser permission
sudo mv kubectl_complete-cnp /usr/local/bin

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 342

ImportantImportant

The name of the script needs to be exactly the one provided since is used by the kubectl auto-complete process

Configuring auto-completion

To configure auto-completion for the plugin, a helper shell script needs to be installed into your current PATH. Assuming the latter contains
/usr/local/bin , this can be done with the following commands:

ImportantImportant

The name of the script needs to be exactly the one provided since it's used by the kubectl auto-complete process

Use

Once the plugin is installed and deployed, you can start using it like this:

NoteNote

The plugin automatically detects if the standard output channel is connected to a terminal. In such cases, it may add ANSI colors to the command
output. To disable colors, use the --color=never option with the command.

Generation of installation manifests

The cnp plugin can be used to generate the YAML manifest for the installation of the operator. This option would typically be used if you want to override
some default configurations such as number of replicas, installation namespace, namespaces to watch, and so on.

For details and available options, run:

The main options are:

cat >> kubectl_complete-cnp <<EOF<<EOF
#!/usr/bin/env sh

Call the __complete command passing it all
arguments
kubectl cnp __complete
"\$@"
EOFEOF

chmod +x kubectl_complete-cnp

Important: the following command may require superuser
permission
sudo mv kubectl_complete-cnp
/usr/local/bin

kubectl cnp <<command>>
<<args...>>

kubectl cnp install generate --
help

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 343

-n : specifies the namespace in which to install the operator (default: postgresql-operator-system).
--control-plane : if set to true, the operator deployment will include a toleration and affinity for node-
role.kubernetes.io/control-plane .
--replicas : sets the number of replicas in the deployment.
--watch-namespace : specifies a comma-separated list of namespaces to watch (default: all namespaces).
--version : defines the minor version of the operator to be installed, such as 1.23 . If a minor version is specified, the plugin installs the latest

patch version of that minor version. If no version is supplied, the plugin installs the latest MAJOR.MINOR.PATCH version of the operator.

An example of the generate command, which will generate a YAML manifest that will install the operator, is as follows:

The flags in the above command have the following meaning:

-n king install the PG4K operator into the king namespace
--version 1.23 install the latest patch version for minor version 1.23
--replicas 3 install the operator with 3 replicas
--watch-namespace "albert, bb, freddie" have the operator watch for changes in the albert , bb and freddie namespaces

only

Status

The status command provides an overview of the current status of your cluster, including:

general informationgeneral information: name of the cluster, PostgreSQL's system ID, number of instances, current timeline and position in the WAL
backupbackup: point of recoverability, and WAL archiving status as returned by the pg_stat_archiver view from the primary - or designated primary
in the case of a replica cluster
streaming replicationstreaming replication: information taken directly from the pg_stat_replication view on the primary instance
instancesinstances: information about each Postgres instance, taken directly by each instance manager; in the case of a standby, the Current LSN field
corresponds to the latest write-ahead log location that has been replayed during recovery (replay LSN).

ImportantImportant

The status information above is taken at different times and at different locations, resulting in slightly inconsistent returned values. For example,
the Current Write LSN location in the main header, might be different from the Current LSN field in the instances status as it is taken
at two different time intervals.

kubectl cnp install generate
\
 -n king \
 --version 1.23 \
 --replicas 3
\
 --watch-namespace "albert, bb, freddie"
\
 >> operator.yaml

kubectl cnp status
sandbox

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 344

output
Cluster Summary
Name: default/sandbox
System ID: 7423474350493388827
PostgreSQL Image: docker.enterprisedb.com/k8s_enterprise/edb-postgres-extended:16.4
Primary instance: sandbox-1
Primary start time: 2024-10-08 18:31:57 +0000 UTC (uptime 1m14s)
Status: Cluster in healthy state
Instances: 3
Ready instances: 3
Size: 126M
Current Write LSN: 0/604DE38 (Timeline: 1 - WAL File: 000000010000000000000006)

Continuous Backup status
Not configured

Streaming Replication status
Replication Slots Enabled
Name Sent LSN Write LSN Flush LSN Replay LSN Write Lag Flush Lag Replay Lag State Sync
State Sync Priority Replication Slot
---- -------- --------- --------- ---------- --------- --------- ---------- ----- ----------
------------- ----------------
sandbox-2 0/604DE38 0/604DE38 0/604DE38 0/604DE38 00:00:00 00:00:00 00:00:00 streaming async
0 active
sandbox-3 0/604DE38 0/604DE38 0/604DE38 0/604DE38 00:00:00 00:00:00 00:00:00 streaming async
0 active

Instances status
Name Current LSN Replication role Status QoS Manager Version Node
---- ----------- ---------------- ------ --- --------------- ----
sandbox-1 0/604DE38 Primary OK BestEffort 1.26.0 k8s-eu-worker
sandbox-2 0/604DE38 Standby (async) OK BestEffort 1.26.0 k8s-eu-worker2
sandbox-3 0/604DE38 Standby (async) OK BestEffort 1.26.0 k8s-eu-worker

If you require more detailed status information, use the --verbose option (or -v for short). The level of detail increases each time the flag is repeated:

kubectl cnp status sandbox --
verbose

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 345

output
Cluster Summary
Name: default/sandbox
System ID: 7423474350493388827
PostgreSQL Image: docker.enterprisedb.com/k8s_enterprise/edb-postgres-extended:16.4
Primary instance: sandbox-1
Primary start time: 2024-10-08 18:31:57 +0000 UTC (uptime 2m4s)
Status: Cluster in healthy state
Instances: 3
Ready instances: 3
Size: 126M
Current Write LSN: 0/6053720 (Timeline: 1 - WAL File: 000000010000000000000006)

Continuous Backup status
Not configured

Physical backups
No running physical backups found

Streaming Replication status
Replication Slots Enabled
Name Sent LSN Write LSN Flush LSN Replay LSN Write Lag Flush Lag Replay Lag State Sync
State Sync Priority Replication Slot Slot Restart LSN Slot WAL Status Slot Safe WAL Size
---- -------- --------- --------- ---------- --------- --------- ---------- ----- ----------
------------- ---------------- ---------------- --------------- ------------------
sandbox-2 0/6053720 0/6053720 0/6053720 0/6053720 00:00:00 00:00:00 00:00:00 streaming async
0 active 0/6053720 reserved NULL
sandbox-3 0/6053720 0/6053720 0/6053720 0/6053720 00:00:00 00:00:00 00:00:00 streaming async
0 active 0/6053720 reserved NULL

Unmanaged Replication Slot Status
No unmanaged replication slots found

Managed roles status
No roles managed

Tablespaces status
No managed tablespaces

Pod Disruption Budgets status
Name Role Expected Pods Current Healthy Minimum Desired Healthy Disruptions Allowed
---- ---- ------------- --------------- ----------------------- -------------------
sandbox replica 2 2 1 1
sandbox-primary primary 1 1 1 0

Instances status
Name Current LSN Replication role Status QoS Manager Version Node
---- ----------- ---------------- ------ --- --------------- ----
sandbox-1 0/6053720 Primary OK BestEffort 1.26.0 k8s-eu-worker
sandbox-2 0/6053720 Standby (async) OK BestEffort 1.26.0 k8s-eu-worker2
sandbox-3 0/6053720 Standby (async) OK BestEffort 1.26.0 k8s-eu-worker

With an additional -v (e.g. kubectl cnp status sandbox -v -v), you can also view PostgreSQL configuration, HBA settings, and certificates.

The command also supports output in yaml and json format.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 346

Promote

The meaning of this command is to promote a pod in the cluster to primary, so you can start with maintenance work or test a switch-over situation in
your cluster

Or you can use the instance node number to promote

Certificates

Clusters created using the EDB Postgres for Kubernetes operator work with a CA to sign a TLS authentication certificate.

To get a certificate, you need to provide a name for the secret to store the credentials, the cluster name, and a user for this certificate

After the secret it's created, you can get it using kubectl

And the content of the same in plain text using the following commands:

Restart

The kubectl cnp restart command can be used in two cases:

requesting the operator to orchestrate a rollout restart for a certain cluster. This is useful to apply configuration changes to cluster dependent
objects, such as ConfigMaps containing custom monitoring queries.

request a single instance restart, either in-place if the instance is the cluster's primary or deleting and recreating the pod if it is a replica.

If the in-place restart is requested but the change cannot be applied without a switchover, the switchover will take precedence over the in-place restart. A
common case for this will be a minor upgrade of PostgreSQL image.

kubectl cnp promote cluster-example cluster-example-
2

kubectl cnp promote cluster-example
2

kubectl cnp certificate cluster-cert --cnp-cluster cluster-example --cnp-user
appuser

kubectl get secret cluster-
cert

kubectl get secret cluster-cert -o json || jq -r '.data | map(@base64d) | .
[]'

this command will restart a whole cluster in a rollout
fashion
kubectl cnp restart
[clusterName]

this command will restart a single instance, according to the policy
above
kubectl cnp restart [clusterName]
[pod]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 347

NoteNote

If you want ConfigMaps and Secrets to be automaticallyautomatically reloaded by instances, you can add a label with key
k8s.enterprisedb.io/reload to it.

Reload

The kubectl cnp reload command requests the operator to trigger a reconciliation loop for a certain cluster. This is useful to apply configuration
changes to cluster dependent objects, such as ConfigMaps containing custom monitoring queries.

The following command will reload all configurations for a given cluster:

Maintenance

The kubectl cnp maintenance command helps to modify one or more clusters across namespaces and set the maintenance window values, it will
change the following fields:

.spec.nodeMaintenanceWindow.inProgress

.spec.nodeMaintenanceWindow.reusePVC

Accepts as argument set and unset using this to set the inProgress to true in case set and to false in case of unset .

By default, reusePVC is always set to false unless the --reusePVC flag is passed.

The plugin will ask for a confirmation with a list of the cluster to modify and their new values, if this is accepted this action will be applied to all the cluster
in the list.

If you want to set in maintenance all the PostgreSQL in your Kubernetes cluster, just need to write the following command:

And you'll have the list of all the cluster to update

output
The following are the new values for the clusters
Namespace Cluster Name Maintenance reusePVC
--------- ------------ ----------- --------
default cluster-example true false
default pg-backup true false
test cluster-example true false
Do you want to proceed? [y/n]: y

Report

The kubectl cnp report command bundles various pieces of information into a ZIP file. It aims to provide the needed context to debug problems
with clusters in production.

It has two sub-commands: operator and cluster .

kubectl cnp reload
[cluster_name]

kubectl cnp maintenance set --all-
namespaces

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 348

report Operator

The operator sub-command requests the operator to provide information regarding the operator deployment, configuration and events.

ImportantImportant

All confidential information in Secrets and ConfigMaps is REDACTED. The Data map will show the keyskeys but the values will be empty. The flag -S
/ --stopRedaction will defeat the redaction and show the values. Use only at your own risk, this will share private data.

NoteNote

By default, operator logs are not collected, but you can enable operator log collection with the --logs flag

deployment informationdeployment information: the operator Deployment and operator Pod
configurationconfiguration: the Secrets and ConfigMaps in the operator namespace
eventsevents: the Events in the operator namespace
webhook configurationwebhook configuration: the mutating and validating webhook configurations
webhook servicewebhook service: the webhook service
logslogs: logs for the operator Pod (optional, off by default) in JSON-lines format

The command will generate a ZIP file containing various manifest in YAML format (by default, but settable to JSON with the -o flag). Use the -f flag to
name a result file explicitly. If the -f flag is not used, a default time-stamped filename is created for the zip file.

NoteNote

The report plugin obeys kubectl conventions, and will look for objects constrained by namespace. The PG4K Operator will generally not be
installed in the same namespace as the clusters. E.g. the default installation namespace is postgresql-operator-system

results in

output
Successfully written report to "report_operator_<TIMESTAMP>.zip" (format: "yaml")

With the -f flag set:

Unzipping the file will produce a time-stamped top-level folder to keep the directory tidy:

will result in:

kubectl cnp report operator -n
<<namespace>>

kubectl cnp report operator -n <<namespace>> -f
reportRedacted.zip

unzip reportRedacted.zip

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 349

output
Archive: reportRedacted.zip
 creating: report_operator_<TIMESTAMP>/
 creating: report_operator_<TIMESTAMP>/manifests/
 inflating: report_operator_<TIMESTAMP>/manifests/deployment.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/operator-pod.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/events.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/validating-webhook-configuration.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/mutating-webhook-configuration.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/webhook-service.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/postgresql-operator-ca-secret.yaml
 inflating: report_operator_<TIMESTAMP>/manifests/postgresql-operator-webhook-cert.yaml

If you activated the --logs option, you'd see an extra subdirectory:

output
Archive: report_operator_<TIMESTAMP>.zip
 <snipped …>
 creating: report_operator_<TIMESTAMP>/operator-logs/
 inflating: report_operator_<TIMESTAMP>/operator-logs/postgresql-operator-controller-manager-66fb98dbc5-
pxkmh-logs.jsonl

NoteNote

The plugin will try to get the PREVIOUS operator's logs, which is helpful when investigating restarted operators. In all cases, it will also try to get
the CURRENT operator logs. If current and previous logs are available, it will show them both.

output
====== Begin of Previous Log =====
2023-03-28T12:56:41.251711811Z {"level":"info","ts":"2023-03-28T12:56:41Z","logger":"setup","msg":"Starting
EDB Postgres for Kubernetes Operator","version":"1.26.0","build":
{"Version":"1.26.0+dev107","Commit":"cc9bab17","Date":"2023-03-28"}}
2023-03-28T12:56:41.251851909Z {"level":"info","ts":"2023-03-28T12:56:41Z","logger":"setup","msg":"Starting
pprof HTTP server","addr":"0.0.0.0:6060"}
 <snipped …>

====== End of Previous Log =====
2023-03-28T12:57:09.854306024Z {"level":"info","ts":"2023-03-28T12:57:09Z","logger":"setup","msg":"Starting
EDB Postgres for Kubernetes Operator","version":"1.26.0","build":
{"Version":"1.26.0+dev107","Commit":"cc9bab17","Date":"2023-03-28"}}
2023-03-28T12:57:09.854363943Z {"level":"info","ts":"2023-03-28T12:57:09Z","logger":"setup","msg":"Starting
pprof HTTP server","addr":"0.0.0.0:6060"}

If the operator hasn't been restarted, you'll still see the ====== Begin … and ====== End … guards, with no content inside.

You can verify that the confidential information is REDACTED by default:

cd
report_operator_<<TIMESTAMP>>/manifests/
head postgresql-operator-ca-
secret.yaml

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 350

With the -S (--stopRedaction) option activated, secrets are shown:

You'll get a reminder that you're about to view confidential information:

output
WARNING: secret Redaction is OFF. Use it with caution
Successfully written report to "reportNonRedacted.zip" (format: "yaml")

report Cluster

The cluster sub-command gathers the following:

cluster resourcescluster resources: the cluster information, same as kubectl get cluster -o yaml
cluster podscluster pods: pods in the cluster namespace matching the cluster name
cluster jobscluster jobs: jobs, if any, in the cluster namespace matching the cluster name
eventsevents: events in the cluster namespace
pod logspod logs: logs for the cluster Pods (optional, off by default) in JSON-lines format
job logsjob logs: logs for the Pods created by jobs (optional, off by default) in JSON-lines format

The cluster sub-command accepts the -f and -o flags, as the operator does. If the -f flag is not used, a default timestamped report name will
be used. Note that the cluster information does not contain configuration Secrets / ConfigMaps, so the -S is disabled.

NoteNote

By default, cluster logs are not collected, but you can enable cluster log collection with the --logs flag

Usage:

data::
 ca.crt:: ""
 ca.key:: ""
metadata::
 creationTimestamp:: "2022-03-22T10:42:28Z"
 managedFields::
 -- apiVersion:: v1
 fieldsType::
FieldsV1
 fieldsV1::

kubectl cnp report operator -n <<namespace>> -f reportNonRedacted.zip -
S

unzip
reportNonRedacted.zip
head postgresql-operator-ca-
secret.yaml

data::
 ca.crt:: LS0tLS1CRUdJTiBD…
 ca.key:: LS0tLS1CRUdJTiBF…
metadata::
 creationTimestamp:: "2022-03-22T10:42:28Z"
 managedFields::
 -- apiVersion:: v1
 fieldsType::
FieldsV1

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 351

Note that, unlike the operator sub-command, for the cluster sub-command you need to provide the cluster name, and very likely the namespace,
unless the cluster is in the default one.

and then:

output
Archive: report.zip
 creating: report_cluster_example_<TIMESTAMP>/
 creating: report_cluster_example_<TIMESTAMP>/manifests/
 inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster.yaml
 inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-pods.yaml
 inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-jobs.yaml
 inflating: report_cluster_example_<TIMESTAMP>/manifests/events.yaml

Remember that you can use the --logs flag to add the pod and job logs to the ZIP.

will result in:

output
Successfully written report to "report_cluster_example_<TIMESTAMP>.zip" (format: "yaml")

output
Archive: report_cluster_example_<TIMESTAMP>.zip
 creating: report_cluster_example_<TIMESTAMP>/
 creating: report_cluster_example_<TIMESTAMP>/manifests/
 inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster.yaml
 inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-pods.yaml
 inflating: report_cluster_example_<TIMESTAMP>/manifests/cluster-jobs.yaml
 inflating: report_cluster_example_<TIMESTAMP>/manifests/events.yaml
 creating: report_cluster_example_<TIMESTAMP>/logs/
 inflating: report_cluster_example_<TIMESTAMP>/logs/cluster-example-full-1.jsonl
 creating: report_cluster_example_<TIMESTAMP>/job-logs/
 inflating: report_cluster_example_<TIMESTAMP>/job-logs/cluster-example-full-1-initdb-qnnvw.jsonl
 inflating: report_cluster_example_<TIMESTAMP>/job-logs/cluster-example-full-2-join-tvj8r.jsonl

OpenShift support

The report operator directive will detect automatically if the cluster is running on OpenShift, and will get the Cluster Service Version and the Install
Plan, and add them automatically to the zip under the openshift sub-folder.

NoteNote

the namespace becomes very important on OpenShift. The default namespace for OpenShift in CNP is "openshift-operators". Many (most) clients
will use a different namespace for the CNP operator.

kubectl cnp report cluster <<clusterName>>
[flags]

kubectl cnp report cluster example -f report.zip -n
example_namespace

unzip report.zip

kubectl cnp report cluster example -n example_namespace --
logs

unzip report_cluster_<<TIMESTAMP>>.zip

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 352

results in

You can find the OpenShift-related files in the openshift sub-folder:

Logs

The kubectl cnp logs command allows to follow the logs of a collection of pods related to EDB Postgres for Kubernetes in a single go.

It has at the moment one available sub-command: cluster .

Cluster logs

The cluster sub-command gathers all the pod logs for a cluster in a single stream or file. This means that you can get all the pod logs in a single
terminal window, with a single invocation of the command.

As in all the cnp plugin sub-commands, you can get instructions and help with the -h flag:

kubectl cnp logs cluster -h

The logs command will display logs in JSON-lines format, unless the --timestamps flag is used, in which case, a human-readable timestamp will be
prepended to each line. In this case, lines will no longer be valid JSON, and tools such as jq may not work as desired.

If the logs cluster sub-command is given the -f flag (aka --follow), it will follow the cluster pod logs, and will also watch for any new pods
created in the cluster after the command has been invoked. Any new pods found, including pods that have been restarted or re-created, will also have their
pods followed. The logs will be displayed in the terminal's standard-out. This command will only exit when the cluster has no more pods left, or when it is
interrupted by the user.

If logs is called without the -f option, it will read the logs from all cluster pods until the time of invocation and display them in the terminal's standard-

kubectl cnp report operator -n openshift-
operators

Successfully written report to "report_operator_<TIMESTAMP>.zip" ((format:
"yaml"))

unzip
report_operator_<<TIMESTAMP>>.zip
cd
report_operator_<<TIMESTAMP>>/
cd openshift
head clusterserviceversions.yaml

apiVersion::
operators.coreos.com/v1alpha1
items::
-- apiVersion::
operators.coreos.com/v1alpha1
 kind::
ClusterServiceVersion
 metadata::
 annotations::
 alm-examples: : |-

[

{
 "apiVersion": "postgresql.k8s.enterprisedb.io/v1",

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 353

If logs is called without the -f option, it will read the logs from all cluster pods until the time of invocation and display them in the terminal's standard-
out, then exit. The -o or --output flag can be provided, to specify the name of the file where the logs should be saved, instead of displaying over
standard-out. The --tail flag can be used to specify how many log lines will be retrieved from each pod in the cluster. By default, the logs cluster
sub-command will display all the logs from each pod in the cluster. If combined with the "follow" flag -f , the number of logs specified by --tail will be
retrieved until the current time, and from then the new logs will be followed.

NOTE: unlike other cnp plugin commands, the -f is used to denote "follow" rather than specify a file. This keeps with the convention of kubectl
logs , which takes -f to mean the logs should be followed.

Usage:

Using the -f option to follow:

Using --tail option to display 3 lines from each pod and the -f option to follow:

output
{"level":"info","ts":"2023-06-30T13:37:33Z","logger":"postgres","msg":"2023-06-30 13:37:33.142 UTC [26]
LOG: ending log output to stderr","source":"/controller/log/postgres","logging_pod":"cluster-example-3"}
{"level":"info","ts":"2023-06-30T13:37:33Z","logger":"postgres","msg":"2023-06-30 13:37:33.142 UTC [26]
HINT: Future log output will go to log destination
\"csvlog\".","source":"/controller/log/postgres","logging_pod":"cluster-example-3"}
…
…

With the -o option omitted, and with --output specified:

$ kubectl cnp logs cluster cluster-example --output my-cluster.log

Successfully written logs to "my-cluster.log"

Pretty

The pretty sub-command reads a log stream from standard input, formats it into a human-readable output, and attempts to sort the entries by
timestamp.

It can be used in combination with kubectl cnp logs cluster , as shown in the following example:

$ kubectl cnp logs cluster cluster-example | kubectl cnp logs pretty
2024-10-15T17:35:00.336 INFO cluster-example-1 instance-manager Starting EDB Postgres for Kubernetes
Instance Manager
2024-10-15T17:35:00.336 INFO cluster-example-1 instance-manager Checking for free disk space for WALs
before starting PostgreSQL
2024-10-15T17:35:00.347 INFO cluster-example-1 instance-manager starting tablespace manager
2024-10-15T17:35:00.347 INFO cluster-example-1 instance-manager starting external server manager
[...]

Alternatively, it can be used in combination with other commands that produce PG4K logs in JSON format, such as stern , or kubectl logs , as in the

kubectl cnp logs cluster <<clusterName>>
[flags]

kubectl cnp report cluster cluster-example -
f

kubectl cnp report cluster cluster-example -f --tail
3

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 354

Alternatively, it can be used in combination with other commands that produce PG4K logs in JSON format, such as stern , or kubectl logs , as in the
following example:

$ kubectl logs cluster-example-1 | kubectl cnp logs pretty
2024-10-15T17:35:00.336 INFO cluster-example-1 instance-manager Starting EDB Postgres for Kubernetes
Instance Manager
2024-10-15T17:35:00.336 INFO cluster-example-1 instance-manager Checking for free disk space for WALs
before starting PostgreSQL
2024-10-15T17:35:00.347 INFO cluster-example-1 instance-manager starting tablespace manager
2024-10-15T17:35:00.347 INFO cluster-example-1 instance-manager starting external server manager
[...]

The pretty sub-command also supports advanced log filtering, allowing users to display logs for specific pods or loggers, or to filter logs by severity
level. Here's an example:

$ kubectl cnp logs cluster cluster-example | kubectl cnp logs pretty --pods cluster-example-1 --loggers
postgres --log-level info
2024-10-15T17:35:00.509 INFO cluster-example-1 postgres 2024-10-15 17:35:00.509 UTC [29] LOG:
redirecting log output to logging collector process
2024-10-15T17:35:00.509 INFO cluster-example-1 postgres 2024-10-15 17:35:00.509 UTC [29] HINT:
Future log output will appear in directory "/controller/log"...
2024-10-15T17:35:00.510 INFO cluster-example-1 postgres 2024-10-15 17:35:00.509 UTC [29] LOG:
ending log output to stderr
2024-10-15T17:35:00.510 INFO cluster-example-1 postgres ending log output to stderr
[...]

The pretty sub-command will try to sort the log stream, to make logs easier to reason about. In order to achieve this, it gathers the logs into groups, and
within groups it sorts by timestamp. This is the only way to sort interactively, as pretty may be piped from a command in "follow" mode. The sub-
command will add a group separator line, --- , at the end of each sorted group. The size of the grouping can be configured via the --sorting-group-
size flag (default: 1000), as illustrated in the following example:

$ kubectl cnp logs cluster cluster-example | kubectl cnp logs pretty --sorting-group-size=3
2024-10-15T17:35:20.426 INFO cluster-example-2 instance-manager Starting EDB Postgres for Kubernetes
Instance Manager
2024-10-15T17:35:20.426 INFO cluster-example-2 instance-manager Checking for free disk space for WALs
before starting PostgreSQL
2024-10-15T17:35:20.438 INFO cluster-example-2 instance-manager starting tablespace manager

2024-10-15T17:35:20.438 INFO cluster-example-2 instance-manager starting external server manager
2024-10-15T17:35:20.438 INFO cluster-example-2 instance-manager starting controller-runtime manager
2024-10-15T17:35:20.439 INFO cluster-example-2 instance-manager Starting EventSource

[...]

To explore all available options, use the -h flag for detailed explanations of the supported flags and their usage.

InfoInfo

You can also increase the verbosity of the log by adding more -v options.

Destroy

The kubectl cnp destroy command helps remove an instance and all the associated PVCs from a Kubernetes cluster.

The optional --keep-pvc flag, if specified, allows you to keep the PVCs, while removing all metadata.ownerReferences that were set by the

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 355

The optional --keep-pvc flag, if specified, allows you to keep the PVCs, while removing all metadata.ownerReferences that were set by the
instance. Additionally, the k8s.enterprisedb.io/pvcStatus label on the PVCs will change from ready to detached to signify that they are
no longer in use.

Running again the command without the --keep-pvc flag will remove the detached PVCs.

Usage:

The following example removes the cluster-example-2 pod and the associated PVCs:

Cluster hibernation

Sometimes you may want to suspend the execution of a EDB Postgres for Kubernetes Cluster while retaining its data, then resume its activity at a later
time. We've called this feature cluster hibernationcluster hibernation.

Hibernation is only available via the kubectl cnp hibernate [on|off] commands.

Hibernating a EDB Postgres for Kubernetes cluster means destroying all the resources generated by the cluster, except the PVCs that belong to the
PostgreSQL primary instance.

You can hibernate a cluster with:

This will:

1. shutdown every PostgreSQL instance
2. detach the PVCs containing the data of the primary instance, and annotate them with the latest database status and the latest cluster configuration
3. delete the Cluster resource, including every generated resource - except the aforementioned PVCs

When hibernated, a EDB Postgres for Kubernetes cluster is represented by just a group of PVCs, in which the one containing the PGDATA is annotated
with the latest available status, including content from pg_controldata .

WarningWarning

A cluster having fenced instances cannot be hibernated, as fencing is part of the hibernation procedure too.

In case of error the operator will not be able to revert the procedure. You can still force the operation with:

A hibernated cluster can be resumed with:

kubectl cnp destroy [CLUSTER_NAME]
[INSTANCE_ID]

kubectl cnp destroy cluster-example
2

kubectl cnp hibernate on <<cluster-
name>>

kubectl cnp hibernate on cluster-example --
force

kubectl cnp hibernate off <<cluster-
name>>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 356

Once the cluster has been hibernated, it's possible to show the last configuration and the status that PostgreSQL had after it was shut down. That can be
done with:

Benchmarking the database with pgbench

Pgbench can be run against an existing PostgreSQL cluster with following command:

Refer to the Benchmarking pgbench section for more details.

Benchmarking the storage with fio

fio can be run on an existing storage class with following command:

Refer to the Benchmarking fio section for more details.

Requesting a new physical backup

The kubectl cnp backup command requests a new physical backup for an existing Postgres cluster by creating a new Backup resource.

InfoInfo

From release 1.21, the backup command accepts a new flag, -m to specify the backup method. To request a backup using volume snapshots,
set -m volumeSnapshot

The following example requests an on-demand backup for a given cluster:

or, if using volume snapshots:

The created backup will be named after the request time:

$ kubectl cnp backup cluster-example
backup/cluster-example-20230121002300 created

By default, a newly created backup will use the backup target policy defined in the cluster to choose which instance to run on. However, you can override
this policy with the --backup-target option.

In the case of volume snapshot backups, you can also use the --online option to request an online/hot backup or an offline/cold one: additionally, you

kubectl cnp hibernate status <<cluster-
name>>

kubectl cnp pgbench <<cluster-name>> -- --time 30 --client 1 --jobs
1

kubectl cnp fio <<fio-job-name>> -n
<<namespace>>

kubectl cnp backup
[cluster_name]

kubectl cnp backup [cluster_name] -m
volumeSnapshot

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 357

In the case of volume snapshot backups, you can also use the --online option to request an online/hot backup or an offline/cold one: additionally, you
can also tune online backups by explicitly setting the --immediate-checkpoint and --wait-for-archive options.

The "Backup" section contains more information about the configuration settings.

Launching psql

The kubectl cnp psql command starts a new PostgreSQL interactive front-end process (psql) connected to an existing Postgres cluster, as if you
were running it from the actual pod. This means that you will be using the postgres user.

ImportantImportant

As you will be connecting as postgres user, in production environments this method should be used with extreme care, by authorized
personnel only.

$ kubectl cnp psql cluster-example

psql (17.0 (Debian 17.0-1.pgdg110+1))
Type "help" for help.

postgres=#

By default, the command will connect to the primary instance. The user can select to work against a replica by using the --replica option:

$ kubectl cnp psql --replica cluster-example

psql (17.0 (Debian 17.0-1.pgdg110+1))

Type "help" for help.

postgres=# select pg_is_in_recovery();
 pg_is_in_recovery

 t
(1 row)

postgres=# \q

This command will start kubectl exec , and the kubectl executable must be reachable in your PATH variable to correctly work.

NoteNote

When connecting to instances running on OpenShift, you must explicitly pass a username to the psql command, because of a security
measure built into OpenShift:

Snapshotting a Postgres cluster

WarningWarning

The kubectl cnp snapshot command has been removed. Please use the backup command to request backups using volume snapshots.

kubectl cnp psql cluster-example -- -U
postgres

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 358

https://cloud.redhat.com/blog/a-guide-to-openshift-and-uids

Using pgAdmin4 for evaluation/demonstration purposes only

pgAdmin stands as the most popular and feature-rich open-source administration and development platform for PostgreSQL. For more information on the
project, please refer to the official documentation.

Given that the pgAdmin Development Team maintains official Docker container images, you can install pgAdmin in your environment as a standard
Kubernetes deployment.

ImportantImportant

Deployment of pgAdmin in Kubernetes production environments is beyond the scope of this document and, more broadly, of the EDB Postgres for
Kubernetes project.

However, for the purposes of demonstration and evaluationfor the purposes of demonstration and evaluation, EDB Postgres for Kubernetes offers a suitable solution. The cnp plugin implements the
pgadmin4 command, providing a straightforward method to connect to a given database Cluster and navigate its content in a local environment

such as kind .

For example, you can install a demo deployment of pgAdmin4 for the cluster-example cluster as follows:

This command will produce:

output
ConfigMap/cluster-example-pgadmin4 created
Deployment/cluster-example-pgadmin4 created
Service/cluster-example-pgadmin4 created
Secret/cluster-example-pgadmin4 created

[...]

After deploying pgAdmin, forward the port using kubectl and connect through your browser by following the on-screen instructions.

As usual, you can use the --dry-run option to generate the YAML file:

pgAdmin4 can be installed in either desktop or server mode, with the default being server.

kubectl cnp pgadmin4 cluster-
example

kubectl cnp pgadmin4 --dry-run cluster-
example

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 359

https://www.pgadmin.org/
https://www.pgadmin.org/docs/

In server mode, authentication is required using a randomly generated password, and users must manually specify the database to connect to.

On the other hand, desktop mode initiates a pgAdmin web interface without requiring authentication. It automatically connects to the app database
as the app user, making it ideal for quick demos, such as on a local deployment using kind :

After concluding your demo, ensure the termination of the pgAdmin deployment by executing:

WarningWarning

Never deploy pgAdmin in production using the plugin.

Logical Replication Publications

The cnp publication command group is designed to streamline the creation and removal of PostgreSQL logical replication publications. Be aware
that these commands are primarily intended for assisting in the creation of logical replication publications, particularly on remote PostgreSQL databases.

WarningWarning

It is crucial to have a solid understanding of both the capabilities and limitations of PostgreSQL's native logical replication system before using
these commands. In particular, be mindful of the logical replication restrictions.

Creating a new publication

To create a logical replication publication, use the cnp publication create command. The basic structure of this command is as follows:

There are two primary use cases:

With --external-cluster : Use this option to create a publication on an external cluster (i.e. defined in the externalClusters stanza).
The commands will be issued from the <LOCAL_CLUSTER> , but the publication will be for the data in <EXTERNAL_CLUSTER> .

Without --external-cluster : Use this option to create a publication in the <LOCAL_CLUSTER> PostgreSQL Cluster (by default, the
app database).

WarningWarning

When connecting to an external cluster, ensure that the specified user has sufficient permissions to execute the CREATE PUBLICATION
command.

You have several options, similar to the CREATE PUBLICATION command, to define the group of tables to replicate. Notable options include:

If you specify the --all-tables option, you create a publication FOR ALL TABLES .

kubectl cnp pgadmin4 --mode desktop cluster-
example

kubectl cnp pgadmin4 --dry-run cluster-example || kubectl delete -f
-

kubectl cnp publication create
\
 --publication <<PUBLICATION_NAME>> \
 [--external-cluster <<EXTERNAL_CLUSTER>>]
 <<LOCAL_CLUSTER>> [options]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 360

https://www.postgresql.org/docs/current/logical-replication-publication.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://www.postgresql.org/docs/current/sql-createpublication.html

Alternatively, you can specify multiple occurrences of:
--table : Add a specific table (with an expression) to the publication.
--schema : Include all tables in the specified database schema (available from PostgreSQL 15).

The --dry-run option enables you to preview the SQL commands that the plugin will execute.

For additional information and detailed instructions, type the following command:

Example

Given a source-cluster and a destination-cluster , we would like to create a publication for the data on source-cluster . The
destination-cluster has an entry in the externalClusters stanza pointing to source-cluster .

We can run:

which will create a publication for all tables on source-cluster , running the SQL commands on the destination-cluster .

Or instead, we can run:

which will create a publication named app for all the tables in the source-cluster , running the SQL commands on the source cluster.

InfoInfo

There are two sample files that have been provided for illustration and inspiration: logical-source and logical-destination.

Dropping a publication

The cnp publication drop command seamlessly complements the create command by offering similar key options, including the publication
name, cluster name, and an optional external cluster. You can drop a PUBLICATION with the following command structure:

To access further details and precise instructions, use the following command:

kubectl cnp publication create --
help

kubectl cnp publication create destination-cluster
\
 --external-cluster==source-cluster --all-tables

kubectl cnp publication create source-cluster
\
 --publication==app --all-tables

kubectl cnp publication drop
\
 --publication <<PUBLICATION_NAME>> \
 [--external-cluster <<EXTERNAL_CLUSTER>>]
 <<LOCAL_CLUSTER>> [options]

kubectl cnp publication drop --
help

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 361

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-logical-source.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-logical-destination.yaml

Logical Replication Subscriptions

The cnp subscription command group is a dedicated set of commands designed to simplify the creation and removal of PostgreSQL logical
replication subscriptions. These commands are specifically crafted to aid in the establishment of logical replication subscriptions, especially when dealing
with remote PostgreSQL databases.

WarningWarning

Before using these commands, it is essential to have a comprehensive understanding of both the capabilities and limitations of PostgreSQL's
native logical replication system. In particular, be mindful of the logical replication restrictions.

In addition to subscription management, we provide a helpful command for synchronizing all sequences from the source cluster. While its applicability may
vary, this command can be particularly useful in scenarios involving major upgrades or data import from remote servers.

Creating a new subscription

To create a logical replication subscription, use the cnp subscription create command. The basic structure of this command is as follows:

This command configures a subscription directed towards the specified publication in the designated external cluster, as defined in the
externalClusters stanza of the <LOCAL_CLUSTER> .

For additional information and detailed instructions, type the following command:

Example

As in the section on publications, we have a source-cluster and a destination-cluster , and we have already created a publication called
app .

The following command:

will create a subscription for app on the destination cluster.

WarningWarning

Prioritize testing subscriptions in a non-production environment to ensure their effectiveness and identify any potential issues before
implementing them in a production setting.

InfoInfo

There are two sample files that have been provided for illustration and inspiration: logical-source and logical-destination.

kubectl cnp subscription create
\
 --subscription <<SUBSCRIPTION_NAME>> \
 --publication <<PUBLICATION_NAME>> \
 --external-cluster <<EXTERNAL_CLUSTER>> \
 <<LOCAL_CLUSTER>> [options]

kubectl cnp subscription create --
help

kubectl cnp subscription create destination-cluster
\
 --external-cluster==source-cluster \
 --publication==app --subscription==app

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 362

https://www.postgresql.org/docs/current/logical-replication-subscription.html
https://www.postgresql.org/docs/current/logical-replication-restrictions.html
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-logical-source.yaml
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-logical-destination.yaml

Dropping a subscription

The cnp subscription drop command seamlessly complements the create command. You can drop a SUBSCRIPTION with the following
command structure:

To access further details and precise instructions, use the following command:

Synchronizing sequences

One notable constraint of PostgreSQL logical replication, implemented through publications and subscriptions, is the lack of sequence synchronization.
This becomes particularly relevant when utilizing logical replication for live database migration, especially to a higher version of PostgreSQL. A crucial step
in this process involves updating sequences before transitioning applications to the new database (cutover).

To address this limitation, the cnp subscription sync-sequences command offers a solution. This command establishes a connection with the
source database, retrieves all relevant sequences, and subsequently updates local sequences with matching identities (based on database schema and
sequence name).

You can use the command as shown below:

For comprehensive details and specific instructions, utilize the following command:

Example

As in the previous sections for publication and subscription, we have a source-cluster and a destination-cluster . The publication and the
subscription, both called app , are already present.

The following command will synchronize the sequences involved in the app subscription, from the source cluster into the destination cluster.

WarningWarning

Prioritize testing subscriptions in a non-production environment to guarantee their effectiveness and detect any potential issues before
deploying them in a production setting.

kubectl cnp subcription drop
\
 --subscription <<SUBSCRIPTION_NAME>> \
 <<LOCAL_CLUSTER>> [options]

kubectl cnp subscription drop --
help

kubectl cnp subscription sync-sequences
\
 --subscription <<SUBSCRIPTION_NAME>> \
 <<LOCAL_CLUSTER>>

kubectl cnp subscription sync-sequences --
help

kubectl cnp subscription sync-sequences destination-cluster
\
 --subscription==app

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 363

Integration with K9s

The cnp plugin can be easily integrated in K9s, a popular terminal-based UI to interact with Kubernetes clusters.

See k9s/plugins.yml for details.

Permissions required by the plugin

The plugin requires a set of Kubernetes permissions that depends on the command to execute. These permissions may affect resources and sub-resources
like Pods, PDBs, PVCs, and enable actions like get , delete , patch . The following table contains the full details:

Command Resource Permissions

backup clusters: get
backups: create

certificate clusters: get
secrets: get,create

destroy
pods: get,delete
jobs: delete,list
PVCs: list,delete,update

fencing clusters: get,patch
pods: get

fio
PVCs: create
configmaps: create
deployment: create

hibernate

clusters: get,patch,delete
pods: list,get,delete
pods/exec: create
jobs: list
PVCs: get,list,update,patch,delete

install none

logs
clusters: get
pods: list
pods/log: get

maintenance clusters: get,patch,list

pgadmin4

clusters: get
configmaps: create
deployments: create
services: create
secrets: create

pgbench clusters: get
jobs: create

promote
clusters: get
clusters/status: patch
pods: get

psql pods: get,list
pods/exec: create

publication
clusters: get
pods: get,list
pods/exec: create

reload clusters: get,patch

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 364

https://k9scli.io/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/k9s/plugins.yml

report cluster

clusters: get
pods: list
pods/log: get
jobs: list
events: list
PVCs: list

report operator

configmaps: get
deployments: get
events: list
pods: list
pods/log: get
secrets: get
services: get
mutatingwebhookconfigurations: list[^1]
validatingwebhookconfigurations: list[^1]
If OLM is present on the K8s cluster, also:
clusterserviceversions: list
installplans: list
subscriptions: list

restart clusters: get,patch
pods: get,delete

status

clusters: get
pods: list
pods/exec: create
pods/proxy: create
PDBs: list

subscription
clusters: get
pods: get,list
pods/exec: create

version none

Command Resource Permissions

[^1]: The permissions are cluster scope ClusterRole resources.

///Footnotes Go Here///

Additionally, assigning the list permission on the clusters will enable autocompletion for multiple commands.

Role examples

It is possible to create roles with restricted permissions. The following example creates a role that only has access to the cluster logs:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 365

The next example shows a role with the minimal permissions required to get the cluster status using the plugin's status command:

apiVersion:: rbac.authorization.k8s.io/v1
kind:: Role
metadata::
 name:: cnp-log
rules::
 -- verbs::
 --
get
 apiGroups::
 -- postgresql.k8s.enterprisedb.io
 resources::
 --
clusters
 -- verbs::
 -- list
 apiGroups::
 -- ''
 resources::
 -- pods
 -- verbs::
 --
get
 apiGroups::
 -- ''
 resources::
 --
pods/log

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 366

ImportantImportant

Keeping the verbs restricted per resources and per apiGroups helps to prevent inadvertently granting more than intended permissions.

apiVersion:: rbac.authorization.k8s.io/v1
kind:: Role
metadata::
 name:: cnp-status
rules::
 -- verbs::
 --
get
 apiGroups::
 -- postgresql.k8s.enterprisedb.io
 resources::
 --
clusters
 -- verbs::
 -- list
 apiGroups::
 -- ''
 resources::
 -- pods
 -- verbs::
 --
create
 apiGroups::
 -- ''
 resources::
 -- pods/exec
 -- verbs::
 --
create
 apiGroups::
 -- ''
 resources::
 -- pods/proxy
 -- verbs::
 -- list
 apiGroups::
 --
policy
 resources::
 -- poddisruptionbudgets

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 367

39 Automated failover

In the case of unexpected errors on the primary for longer than the .spec.failoverDelay (by default 0 seconds), the cluster will go into failoverfailover
modemode. This may happen, for example, when:

The primary pod has a disk failure
The primary pod is deleted
The postgres container on the primary has any kind of sustained failure

In the failover scenario, the primary cannot be assumed to be working properly.

After cases like the ones above, the readiness probe for the primary pod will start failing. This will be picked up in the controller's reconciliation loop. The
controller will initiate the failover process, in two steps:

1. First, it will mark the TargetPrimary as pending . This change of state will force the primary pod to shutdown, to ensure the WAL receivers on
the replicas will stop. The cluster will be marked in failover phase ("Failing over").

2. Once all WAL receivers are stopped, there will be a leader election, and a new primary will be named. The chosen instance will initiate promotion to
primary, and, after this is completed, the cluster will resume normal operations. Meanwhile, the former primary pod will restart, detect that it is no
longer the primary, and become a replica node.

ImportantImportant

The two-phase procedure helps ensure the WAL receivers can stop in an orderly fashion, and that the failing primary will not start streaming
WALs again upon restart. These safeguards prevent timeline discrepancies between the new primary and the replicas.

During the time the failing primary is being shut down:

1. It will first try a PostgreSQL's fast shutdown with .spec.switchoverDelay seconds as timeout. This graceful shutdown will attempt to archive
pending WALs.

2. If the fast shutdown fails, or its timeout is exceeded, a PostgreSQL's immediate shutdown is initiated.

InfoInfo

"Fast" mode does not wait for PostgreSQL clients to disconnect and will terminate an online backup in progress. All active transactions are rolled
back and clients are forcibly disconnected, then the server is shut down. "Immediate" mode will abort all PostgreSQL server processes
immediately, without a clean shutdown.

RTO and RPO impact

Failover may result in the service being impacted (RTO) and/or data being lost (RPO):

1. During the time when the primary has started to fail, and before the controller starts failover procedures, queries in transit, WAL writes, checkpoints
and similar operations, may fail.

2. Once the fast shutdown command has been issued, the cluster will no longer accept connections, so service will be impacted but no data will be lost.
3. If the fast shutdown fails, the immediate shutdown will stop any pending processes, including WAL writing. Data may be lost.
4. During the time the primary is shutting down and a new primary hasn't yet started, the cluster will operate without a primary and thus be impaired -

but with no data loss.

NoteNote

The timeout that controls fast shutdown is set by .spec.switchoverDelay , as in the case of a switchover. Increasing the time for fast
shutdown is safer from an RPO point of view, but possibly delays the return to normal operation - negatively affecting RTO.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 368

WarningWarning

As already mentioned in the "Instance Manager" section when explaining the switchover process, the .spec.switchoverDelay option
affects the RPO and RTO of your PostgreSQL database. Setting it to a low value, might favor RTO over RPO but lead to data loss at cluster level
and/or backup level. On the contrary, setting it to a high value, might remove the risk of data loss while leaving the cluster without an active
primary for a longer time during the switchover.

Delayed failover

As anticipated above, the .spec.failoverDelay option allows you to delay the start of the failover procedure by a number of seconds after the
primary has been detected to be unhealthy. By default, this setting is set to 0 , triggering the failover procedure immediately.

Sometimes failing over to a new primary can be more disruptive than waiting for the primary to come back online. This is especially true of network
disruptions where multiple tiers are affected (i.e., downstream logical subscribers) or when the time to perform the failover is longer than the expected
outage.

Enabling a new configuration option to delay failover provides a mechanism to prevent premature failover for short-lived network or node instability.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 369

40 Fencing

Fencing in EDB Postgres for Kubernetes is the ultimate process of protecting the data in one, more, or even all instances of a PostgreSQL cluster when they
appear to be malfunctioning. When an instance is fenced, the PostgreSQL server process (postmaster) is guaranteed to be shut down, while the pod is
kept running. This makes sure that, until the fence is lifted, data on the pod is not modified by PostgreSQL and that the file system can be investigated for
debugging and troubleshooting purposes.

How to fence instances

In EDB Postgres for Kubernetes you can fence:

a specific instance
a list of instances
an entire Postgres Cluster

Fencing is controlled through the content of the k8s.enterprisedb.io/fencedInstances annotation, which expects a JSON formatted list of
instance names. If the annotation is set to '["*"]' , a singleton list with a wildcard, the whole cluster is fenced. If the annotation is set to an empty
JSON list, the operator behaves as if the annotation was not set.

For example:

k8s.enterprisedb.io/fencedInstances: '["cluster-example-1"]' will fence just the cluster-example-1 instance

k8s.enterprisedb.io/fencedInstances: '["cluster-example-1","cluster-example-2"]' will fence the cluster-
example-1 and cluster-example-2 instances

k8s.enterprisedb.io/fencedInstances: '["*"]' will fence every instance in the cluster.

The annotation can be manually set on the Kubernetes object, for example via the kubectl annotate command, or in a transparent way using the
kubectl cnp fencing on subcommand:

to fence only one instance
kubectl cnp fencing on cluster-example 1

to fence all the instances in a Cluster
kubectl cnp fencing on cluster-example "*"

Here is an example of a Cluster with an instance that was previously fenced:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 annotations::
 k8s.enterprisedb.io/fencedInstances:: '["cluster-example-1"]'
[[...]]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 370

How to lift fencing

Fencing can be lifted by clearing the annotation, or set it to a different value.

As for fencing, this can be done either manually with kubectl annotate , or using the kubectl cnp fencing subcommand as follows:

to lift the fencing only for one instance
N.B.: at the moment this won't work if the whole cluster was fenced previously,
in that case you will have to manually set the annotation as explained above
kubectl cnp fencing off cluster-example 1

to lift the fencing for all the instances in a Cluster
kubectl cnp fencing off cluster-example "*"

How fencing works

Once an instance is set for fencing, the procedure to shut down the postmaster process is initiated, identical to the one of the switchover. This consists
of an initial fast shutdown with a timeout set to .spec.switchoverDelay , followed by an immediate shutdown. Then:

the Pod will be kept alive

the Pod won't be marked as Ready

all the changes that don't require the Postgres instance to be up will be reconciled, including:

configuration files
certificates and all the cryptographic material

metrics will not be collected, except cnp_collector_fencing_on which will be set to 1

WarningWarning

If a primary instanceprimary instance is fenced, its postmaster process is shut down but no failover is performed, interrupting the operativity of the applications.
When the fence will be lifted, the primary instance will be started up again without performing a failover.

Given that, we advise users to fence primary instances only if strictly required.

If a fenced instance is deleted, the pod will be recreated normally, but the postmaster won't be started. This can be extremely helpful when instances are
Crashlooping .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 371

41 Declarative hibernation

EDB Postgres for Kubernetes is designed to keep PostgreSQL clusters up, running and available anytime.

There are some kinds of workloads that require the database to be up only when the workload is active. Batch-driven solutions are one such case.

In batch-driven solutions, the database needs to be up only when the batch process is running.

The declarative hibernation feature enables saving CPU power by removing the database Pods, while keeping the database PVCs.

Hibernation

To hibernate a cluster, set the k8s.enterprisedb.io/hibernation=on annotation:

A hibernated cluster won't have any running Pods, while the PVCs are retained so that the cluster can be rehydrated at a later time. Replica PVCs will be
kept in addition to the primary's PVC.

The hibernation procedure will delete the primary Pod and then the replica Pods, avoiding switchover, to ensure the replicas are kept in sync.

The hibernation status can be monitored by looking for the k8s.enterprisedb.io/hibernation condition:

The hibernation status can also be read with the status sub-command of the cnp plugin for kubectl :

$ kubectl annotate cluster <<cluster-name>> --overwrite
k8s.enterprisedb.io/hibernation=on

$ kubectl get cluster <<cluster-name>> -o "jsonpath={.status.conditions[?
(.type==\"k8s.enterprisedb.io/hibernation\")]}"

{{
 "lastTransitionTime":"2023-03-05T16:43:35Z",
 "message":"Cluster has been
hibernated",
 "reason":"Hibernated",
 "status":"True",
 "type":"k8s.enterprisedb.io/hibernation"
}}

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 372

Rehydration

To rehydrate a cluster, either set the k8s.enterprisedb.io/hibernation annotation to off :

$ kubectl annotate cluster <cluster-name> --overwrite k8s.enterprisedb.io/hibernation=off

Or, just unset it altogether:

$ kubectl annotate cluster <cluster-name> k8s.enterprisedb.io/hibernation-

The Pods will be recreated and the cluster will resume operation.

$ kubectl cnp status <<cluster-
name>>
Cluster Summary
Name: cluster-
example
Namespace: default
PostgreSQL Image:
quay.io/enterprisedb/postgresql:17.5
Primary instance: cluster-example-
2
Status: Cluster in healthy state
Instances:
3
Ready instances:
0

Hibernation
Status Hibernated
Message Cluster has been
hibernated
Time 2023-03-05 16:43:35 +0000
UTC
[..]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 373

42 PostGIS

PostGIS is a very popular open source extension for PostgreSQL that introduces support for storing GIS (Geographic Information Systems) objects in the
database and be queried via SQL.

ImportantImportant

This section assumes you are familiar with PostGIS and provides some basic information about how to create a new PostgreSQL cluster with a
PostGIS database in Kubernetes via EDB Postgres for Kubernetes.

The CloudNativePG Community maintains container images that are built on top of the official PostGIS images hosted on DockerHub. For more information
please visit:

The postgis-containers project in GitHub
The postgis-containers Container Registry in GitHub

Additionally, EDB provides container images for EDB Postgres Advanced Server that include PostGIS and makes them available in the official registry on
Quay.io with the -postgis suffix.

Basic concepts about a PostGIS cluster

Conceptually, a PostGIS-based PostgreSQL cluster (or simply a PostGIS cluster) is like any other PostgreSQL cluster. The only differences are:

the presence in the system of PostGIS and related libraries
the presence in the database(s) of the PostGIS extension

Since EDB Postgres for Kubernetes is based on Immutable Application Containers, the only way to provision PostGIS is to add it to the container image that
you use for the operand. The "Container Image Requirements" section provides detailed instructions on how this is achieved. More simply, you can just use
the PostGIS container images from the Community, as in the examples below.

The second step is to install the extension in the PostgreSQL database. You can do this in two ways:

install it in the application database, which is the main and supposedly only database you host in the cluster according to the microservice
architecture, or
install it in the template1 database so as to make it available for all the databases you end up creating in the cluster, in case you adopt the
monolith architecture where the instance is shared by multiple databases

InfoInfo

For more information on the microservice vs monolith architecture in the database please refer to the "How many databases should be hosted in a
single PostgreSQL instance?" FAQ or the "Database import" section.

Create a new PostgreSQL cluster with PostGIS

Let's suppose you want to create a new PostgreSQL 14 cluster with PostGIS 3.2.

The first step is to ensure you use the right PostGIS container image for the operand, and properly set the .spec.imageName option in the Cluster
resource.

The postgis-example.yaml manifest below provides some guidance on how the creation of a PostGIS cluster can be done.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 374

https://postgis.net/
https://hub.docker.com/r/postgis/postgis
https://github.com/cloudnative-pg/postgis-containers
https://github.com/cloudnative-pg/postgis-containers/pkgs/container/postgis
https://quay.io/repository/enterprisedb/edb-postgres-advanced?tab=tags
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/postgis-example.yaml

WarningWarning

Please consider that, although convention over configuration applies in EDB Postgres for Kubernetes, you should spend time configuring and
tuning your system for production. Also the imageName in the example below deliberately points to the latest available image for PostgreSQL
14 - you should use a specific image name or, preferably, the SHA256 digest for true immutability.

The example relies on the postInitTemplateSQL option which executes a list of queries against the template1 database, before the actual
creation of the application database (called app). This means that, once you have applied the manifest and the cluster is up, you will have the above
extensions installed in both the template database and the application database, ready for use.

InfoInfo

Take some time and look at the available options in .spec.bootstrap.initdb from the API reference, such as
postInitApplicationSQL .

You can easily verify the available version of PostGIS that is in the container, by connecting to the app database (you might obtain different values from
the ones in this document):

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgis-
example
spec::
 instances:: 3
 imageName:: ghcr.io/enterprisedb/postgresql:16-postgis
 bootstrap::
 initdb::
 postInitTemplateSQL::
 -- CREATE EXTENSION
postgis;
 -- CREATE EXTENSION
postgis_topology;
 -- CREATE EXTENSION
fuzzystrmatch;
 -- CREATE EXTENSION
postgis_tiger_geocoder;

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 375

$ kubectl exec -ti postgis-example-1 -- psql app
Defaulted container "postgres" out of: postgres, bootstrap-controller (init)
psql (16.0 (Debian 16.0-1.pgdg110+1))
Type "help" for help.

app=# SELECT * FROM pg_available_extensions WHERE name ~ '^postgis' ORDER BY 1;
 name | default_version | installed_version | comment
--------------------------+-----------------+-------------------+---

 postgis | 3.2.2 | 3.2.2 | PostGIS geometry and geography spatial
types and functions
 postgis-3 | 3.2.2 | | PostGIS geometry and geography spatial
types and functions
 postgis_raster | 3.2.2 | | PostGIS raster types and functions
 postgis_raster-3 | 3.2.2 | | PostGIS raster types and functions
 postgis_sfcgal | 3.2.2 | | PostGIS SFCGAL functions
 postgis_sfcgal-3 | 3.2.2 | | PostGIS SFCGAL functions
 postgis_tiger_geocoder | 3.2.2 | 3.2.2 | PostGIS tiger geocoder and reverse
geocoder
 postgis_tiger_geocoder-3 | 3.2.2 | | PostGIS tiger geocoder and reverse
geocoder
 postgis_topology | 3.2.2 | 3.2.2 | PostGIS topology spatial types and
functions
 postgis_topology-3 | 3.2.2 | | PostGIS topology spatial types and
functions
(10 rows)

The next step is to verify that the extensions listed in the postInitTemplateSQL section have been correctly installed in the app database.

app=# \dx
 List of installed extensions
 Name | Version | Schema | Description
------------------------+---------+------------+--
 fuzzystrmatch | 1.1 | public | determine similarities and distance between strings
 plpgsql | 1.0 | pg_catalog | PL/pgSQL procedural language
 postgis | 3.2.2 | public | PostGIS geometry and geography spatial types and functions
 postgis_tiger_geocoder | 3.2.2 | tiger | PostGIS tiger geocoder and reverse geocoder
 postgis_topology | 3.2.2 | topology | PostGIS topology spatial types and functions
(5 rows)

Finally:

app=# SELECT postgis_full_version();
 postgis_full_version
--
--
 POSTGIS="3.2.2 628da50" [EXTENSION] PGSQL="140" GEOS="3.9.0-CAPI-1.16.2" PROJ="7.2.1" LIBXML="2.9.10"
LIBJSON="0.15" LIBPROTOBUF="1.3.3" WAGYU="0.5.0 (Internal)" TOPOLOGY
(1 row)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 376

43 Container Image Requirements

The EDB Postgres for Kubernetes operator for Kubernetes is designed to work with any compatible PostgreSQL container image that meets the following
requirements:

PostgreSQL executables must be available in the system path:
initdb
postgres
pg_ctl
pg_controldata
pg_basebackup

Proper locale settings configured

Optional Components:

PGAudit extension (only required if audit logging is needed)
du (used for kubectl cnp status)

ImportantImportant

Only PostgreSQL versions officially supported by PGDG are allowed.

InfoInfo

Barman Cloud executables are no longer required in EDB Postgres for Kubernetes. The recommended approach is to use the dedicated Barman
Cloud Plugin.

No entry point or command is required in the image definition. EDB Postgres for Kubernetes automatically overrides it with its instance manager.

WarningWarning

EDB Postgres for Kubernetes only supports Primary with multiple/optional Hot Standby Servers architecturePrimary with multiple/optional Hot Standby Servers architecture for PostgreSQL application
container images.

EDB provides and maintains public PostgreSQL container images that are fully compatible with EDB Postgres for Kubernetes. These images are published
on quay.io.

Image Tag Requirements

To ensure the operator makes informed decisions, it must accurately detect the PostgreSQL major version. This detection can occur in two ways:

1. Utilizing the major field of the imageCatalogRef , if defined.
2. Auto-detecting the major version from the image tag of the imageName if not explicitly specified.

For auto-detection to work, the image tag must adhere to a specific format. It should commence with a valid PostgreSQL major version number (e.g., 15.6 or
16), optionally followed by a dot and the patch level.

Following this, the tag can include any character combination valid and accepted in a Docker tag, preceded by a dot, an underscore, or a minus sign.

Examples of accepted image tags:

12.1
13.3.2.1-1
13.4

14

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 377

https://www.pgaudit.org/
https://postgresql.org/
https://github.com/cloudnative-pg/plugin-barman-cloud
https://github.com/enterprisedb/docker-postgres
https://quay.io/enterprisedb/postgresql

14
15.5-10
16.0

WarningWarning

latest is not considered a valid tag for the image.

NoteNote

Image tag requirements do no apply for images defined in a catalog.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 378

44 Custom Pod Controller

Kubernetes uses the Controller pattern to align the current cluster state with the desired one.

Stateful applications are usually managed with the StatefulSet controller, which creates and reconciles a set of Pods built from the same
specification, and assigns them a sticky identity.

EDB Postgres for Kubernetes implements its own custom controller to manage PostgreSQL instances, instead of relying on the StatefulSet controller.
While bringing more complexity to the implementation, this design choice provides the operator with more flexibility on how we manage the cluster, while
being transparent on the topology of PostgreSQL clusters.

Like many choices in the design realm, different ones lead to other compromises. The following sections discuss a few points where we believe this design
choice has made the implementation of EDB Postgres for Kubernetes more reliable, and easier to understand.

PVC resizing

This is a well known limitation of StatefulSet : it does not support resizing PVCs. This is inconvenient for a database. Resizing volumes requires
convoluted workarounds.

In contrast, EDB Postgres for Kubernetes leverages the configured storage class to manage the underlying PVCs directly, and can handle PVC resizing if the
storage class supports it.

Primary Instances versus Replicas

The StatefulSet controller is designed to create a set of Pods from just one template. Given that we use one Pod per PostgreSQL instance, we have
two kinds of Pods:

1. primary instance (only one)
2. replicas (multiple, optional)

This difference is relevant when deciding the correct deployment strategy to execute for a given operation.

Some operations should be performed on the replicas first, and then on the primary, but only after an updated replica is promoted as the new primary. For
example, when you want to apply a different PostgreSQL image version, or when you increase configuration parameters like max_connections (which
are treated specially by PostgreSQL because EDB Postgres for Kubernetes uses hot standby replicas).

While doing that, EDB Postgres for Kubernetes considers the PostgreSQL instance's role - and not just its serial number.

Sometimes the operator needs to follow the opposite process: work on the primary first and then on the replicas. For example, when you lower
max_connections . In that case, EDB Postgres for Kubernetes will:

apply the new setting to the primary instance
restart it
apply the new setting on the replicas

The StatefulSet controller, being application-independent, can't incorporate this behavior, which is specific to PostgreSQL's native replication
technology.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 379

https://kubernetes.io/docs/concepts/architecture/controller/
https://kubernetes.io/docs/concepts/workloads/controllers/statefulset/
https://www.postgresql.org/docs/current/hot-standby.html

Coherence of PVCs

PostgreSQL instances can be configured to work with multiple PVCs: this is how WAL storage can be separated from PGDATA .

The two data stores need to be coherent from the PostgreSQL point of view, as they're used simultaneously. If you delete the PVC corresponding to the WAL
storage of an instance, the PVC where PGDATA is stored will not be usable anymore.

This behavior is specific to PostgreSQL and is not implemented in the StatefulSet controller - the latter not being application specific.

After the user dropped a PVC, a StatefulSet would just recreate it, leading to a corrupted PostgreSQL instance.

EDB Postgres for Kubernetes would instead classify the remaining PVC as unusable, and start creating a new pair of PVCs for another instance to join the
cluster correctly.

Local storage, remote storage, and database size

Sometimes you need to take down a Kubernetes node to do an upgrade. After the upgrade, depending on your upgrade strategy, the updated node could go
up again, or a new node could replace it.

Supposing the unavailable node was hosting a PostgreSQL instance, depending on your database size and your cloud infrastructure, you may prefer to
choose one of the following actions:

1. drop the PVC and the Pod residing on the downed node; create a new PVC cloning the data from another PVC; after that, schedule a Pod for it

2. drop the Pod, schedule the Pod in a different node, and mount the PVC from there

3. leave the Pod and the PVC as they are, and wait for the node to be back up.

The first solution is practical when your database size permits, allowing you to immediately bring back the desired number of replicas.

The second solution is only feasible when you're not using the storage of the local node, and re-mounting the PVC in another host is possible in a
reasonable amount of time (which only you and your organization know).

The third solution is appropriate when the database is big and uses local node storage for maximum performance and data durability.

The EDB Postgres for Kubernetes controller implements all these strategies so that the user can select the preferred behavior at the cluster level (read the
"Kubernetes upgrade" section for details).

Being generic, the StatefulSet doesn't allow this level of customization.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 380

45 Networking

EDB Postgres for Kubernetes assumes the underlying Kubernetes cluster has the required connectivity already set up. Networking on Kubernetes is an
important and extended topic; please refer to the Kubernetes documentation for further information.

If you're following the quickstart guide to install EDB Postgres for Kubernetes on a local KinD or K3d cluster, you should not encounter any networking
issues as neither platform will add any networking restrictions by default.

However, when deploying EDB Postgres for Kubernetes on existing infrastructure, networking restrictions might be in place that could impair the
communication of the operator with PostgreSQL clusters. Specifically, existing Network Policies might restrict certain types of traffic.

Or, you might be interested in adding network policies in your environment for increased security. As mentioned in the security document, please ensure
the operator can reach every cluster pod on ports 8000 and 5432, and that pods can connect to each other.

Cross-namespace network policy for the operator

Following the quickstart guide or using helm chart for deployment will install the operator in a dedicated namespace (postgresql-operator-
system by default). We recommend that you create clusters in a different namespace.

The operator must be able to connect to cluster pods. This might be precluded if there is a NetworkPolicy restricting cross-namespace traffic.

For example, the kubernetes guide on network policies contains an example policy denying all ingress traffic by default.

If your local kubernetes setup has this kind of restrictive network policy, you will need to create a NetworkPolicy to explicitly allow connection from
the operator namespace and pod to the cluster namespace and pods. You can find an example in the networkpolicy-example.yaml file in this
repository. Please note, you'll need to adjust the cluster name and cluster namespace to match your specific setup, and also the operator namespace if it is
not the default namespace.

Cross-cluster networking

While bootstrapping from another cluster or when using the externalClusters section, ensure connectivity among all clusters, object stores, and
namespaces involved.

Again, we refer you to the Kubernetes documentation for setup information.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 381

https://kubernetes.io/docs/concepts/services-networking/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://kubernetes.io/docs/concepts/services-networking/network-policies/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/networkpolicy-example.yaml
https://kubernetes.io/docs/concepts/services-networking/

46 Benchmarking

The CNP kubectl plugin provides an easy way for benchmarking a PostgreSQL deployment in Kubernetes using EDB Postgres for Kubernetes.

Benchmarking is focused on two aspects:

the databasedatabase, by relying on pgbench
the storagestorage, by relying on fio

IMPORTANTIMPORTANT

pgbench and fio must be run in a staging or pre-production environment. Do not use these plugins in a production environment, as it might
have catastrophic consequences on your databases and the other workloads/applications that run in the same shared environment.

pgbench

The kubectl CNP plugin command pgbench executes a user-defined pgbench job against an existing Postgres Cluster.

Through the --dry-run flag you can generate the manifest of the job for later modification/execution.

A common command structure with pgbench is the following:

kubectl cnp pgbench \
 -n <namespace> <cluster-name> \
 --job-name <pgbench-job> \
 --db-name <db-name> \
 -- <pgbench options>

IMPORTANTIMPORTANT

Please refer to the pgbench documentation for information about the specific options to be used in your jobs.

This example creates a job called pgbench-init that initializes for pgbench OLTP-like purposes the app database in a Cluster named
cluster-example , using a scale factor of 1000:

kubectl cnp pgbench \
 --job-name pgbench-init \
 cluster-example \
 -- --initialize --scale 1000

NoteNote

This will generate a database with 100000000 records, taking approximately 13GB of space on disk.

You can see the progress of the job with:

kubectl logs jobs/pgbench-run

The following example creates a job called pgbench-run executing pgbench against the previously initialized database for 30 seconds, using a single
connection:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 382

https://www.postgresql.org/docs/current/pgbench.html
https://fio.readthedocs.io/en/latest/fio_doc.html
https://www.postgresql.org/docs/current/pgbench.html

kubectl cnp pgbench \
 --job-name pgbench-run \
 cluster-example \
 -- --time 30 --client 1 --jobs 1

The next example runs pgbench against an existing database by using the --db-name flag and the pgbench namespace:

kubectl cnp pgbench \
 --db-name pgbench \
 --job-name pgbench-job \
 cluster-example \
 -- --time 30 --client 1 --jobs 1

By default, jobs do not expire. You can enable automatic deletion with the --ttl flag. The job will be deleted after the specified duration (in seconds).

kubectl cnp pgbench \
 --job-name pgbench-run \
 --ttl 600 \
 cluster-example \
 -- --time 30 --client 1 --jobs 1

If you want to run a pgbench job on a specific worker node, you can use the --node-selector option. Suppose you want to run the previous
initialization job on a node having the workload=pgbench label, you can run:

kubectl cnp pgbench \
 --db-name pgbench \
 --job-name pgbench-init \
 --node-selector workload=pgbench \
 cluster-example \
 -- --initialize --scale 1000

The job status can be fetched by running:

kubectl get job/pgbench-job -n <namespace>

NAME COMPLETIONS DURATION AGE
job-name 1/1 15s 41s

Once the job is completed the results can be gathered by executing:

kubectl logs job/pgbench-job -n <namespace>

fio

The kubectl CNP plugin command fio executes a fio job with default values and read operations. Through the --dry-run flag you can generate the
manifest of the job for later modification/execution.

NoteNote

The kubectl plugin command fio will create a deployment with predefined fio job values using a ConfigMap. If you want to provide custom job
values, we recommend generating a manifest using the --dry-run flag and providing your custom job values in the generated ConfigMap.

Example of default usage:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 383

kubectl cnp fio <fio-name>

Example with custom values:

kubectl cnp fio <fio-name> \
 -n <namespace> \
 --storageClass <name> \
 --pvcSize <size>

Example of how to run the fio command against a StorageClass named standard and pvcSize: 2Gi in the fio namespace:

kubectl cnp fio fio-job \
 -n fio \
 --storageClass standard \
 --pvcSize 2Gi

The deployment status can be fetched by running:

kubectl get deployment/fio-job -n fio

NAME READY UP-TO-DATE AVAILABLE AGE
fio-job 1/1 1 1 14s

After running kubectl plugin command fio .

It will:

1. Create a PVC
2. Create a ConfigMap representing the configuration of a fio job
3. Create a fio deployment composed by a single Pod, which will run fio on the PVC, create graphs after completing the benchmark and start serving the

generated files with a webserver. We use the fio-tools image for that.

The Pod created by the deployment will be ready when it starts serving the results. You can forward the port of the pod created by the deployment

kubectl port-forward -n <namespace> deployment/<fio-name> 8000

and then use a browser and connect to http://localhost:8000/ to get the data.

The default 8k block size has been chosen to emulate a PostgreSQL workload. Disks that cap the amount of available IOPS can show very different
throughput values when changing this parameter.

Below is an example diagram of sequential writes on a local disk mounted on a dedicated Kubernetes node (1 hour benchmark):

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 384

https://github.com/wallnerryan/fio-tools

After all testing is done, fio deployment and resources can be deleted by:

kubectl cnp fio <fio-job-name> --dry-run | kubectl delete -f -

make sure use the same name which was used to create the fio deployment and add namespace if applicable.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 385

47 Free evaluation

EDB Postgres for Kubernetes is available for a free evaluation.

Use your EDB account to evaluate Postgres for Kubernetes. If you don't have an account, register for one. Then follow the installation guide to install the
operator, using the access token you obtained from your EDB account.

Evaluating using PostgreSQL

By default, EDB Postgres for Kubernetes installs the latest available version of Community Postgresql.

PostgreSQL container images are available at quay.io/enterprisedb/postgresql.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 386

https://www.enterprisedb.com/accounts/register
https://quay.io/repository/enterprisedb/postgresql

48 License and License keys

License keys are a legacy management mechanism for EDB Postgres for Kubernetes. You do not need a license key if you have installed using an EDB
subscription token, and in this case, the licensing commands in this section can be ignored.

If you are not using an EDB subscription token and installing from public repositories, then you will need a license key. The only exception is when you run
the operator with Community PostgreSQL: in this case, if the license key is unset, a cluster will be started with the default trial license - which
automatically expires after 30 days. This is not the recommended way of trialing EDB Postgres for Kubernetes - see the installation guide for the
recommended options.

The following documentation is only for users who have installed the operator using a license key.

Company level license keys

A license key allows you to create an unlimited number of PostgreSQL clusters in your installation.

The license key needs to be available in a Secret in the same namespace where the operator is deployed (ConfigMap is also available, but not
recommended for a license key).

Operator configurationOperator configuration

For more information, refer to Operator configuration.

Once the company level license is installed, the validity of the license key can be checked inside the cluster status.

Kubernetes installations via YAML manifest

When the operator is installed in Kubernetes using the YAML manifest, it is deployed by default in the postgresql-operator-system namespace.

Given the namespace name, and the license key, you can create the config map with the following command:

kubectl create configmap -n [NAMESPACE_NAME_HERE] \
 postgresql-operator-controller-manager-config \
 --from-literal=EDB_LICENSE_KEY=[LICENSE_KEY_HERE]

Operator pods will need to be recreated to apply the new configuration. You can use the following command:

kubectl get cluster cluster_example -o
yaml
[...]
status:
 [...]
 licenseStatus:
 licenseExpiration: "2021-11-06T09:36:02Z"
 licenseStatus: Trial
 valid: true
 isImplicit: false
 isTrial: true
[...]

kubectl rollout restart deployment -n [NAMESPACE_NAME_HERE]
\
 postgresql-operator-controller-
manager

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 387

Cluster level license keys

Each Cluster resource has a licenseKey parameter in its definition. You can find the expiration date, as well as more information about the license,
in the cluster status:

A cluster license key can be updated with a new one at any moment, to extend the expiration date or move the cluster to a production license.

License key secret at cluster level

Each Cluster resource can also have a licenseKeySecret parameter, which contains the name and key of a secret. That secret contains the
license key provided by EDB.

This field will take precedence over licenseKey : it will be refreshed when you change the secret, in order to extend the expiration date, or switching
from a trial license to a production license.

EDB Postgres for Kubernetes is distributed under the EDB Limited Usage License Agreement, available at enterprisedb.com/limited-use-license.

EDB Postgres for Kubernetes: Copyright (C) 2019-2022 EnterpriseDB Corporation.

What happens when a license expires

After the license expiration, the operator will cease any reconciliation attempt on the cluster, effectively stopping to manage its status. This also includes
any self-healing and high availability capabilities, such as automated failover and switchovers.

The pods and the data will still be available.

kubectl get cluster cluster_example -o
yaml
[...]
status:
 [...]
 licenseStatus:
 licenseExpiration: "2021-11-06T09:36:02Z"
 licenseStatus: Trial
 valid: true
 isImplicit: false
 isTrial: true
[...]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 388

https://www.enterprisedb.com/limited-use-license

49 Red Hat OpenShift

EDB Postgres for Kubernetes is certified to run on Red Hat OpenShift Container Platform (OCP) version 4.x and is available directly from the Red Hat
Catalog.

The goal of this section is to help you decide the best installation method for EDB Postgres for Kubernetes based on your organizations' security and access
control policies.

The first and critical step is to design the architecture of your PostgreSQL clusters in your OpenShift environment.

Once the architecture is clear, you can proceed with the installation. EDB Postgres for Kubernetes can be installed and managed via:

OpenShift web console
OpenShift command-line interface (CLI) called oc , for full control

EDB Postgres for Kubernetes supports all available install modes defined by OpenShift:

cluster-wide, in all namespaces
local, in a single namespace
local, watching multiple namespaces (only available using oc)

NoteNote

A project is a Kubernetes namespace with additional annotations, and is the central vehicle by which access to resources for regular users is
managed.

In most cases, the default cluster-wide installation of EDB Postgres for Kubernetes is the recommended one, with either central management of
PostgreSQL clusters or delegated management (limited to specific users/projects according to RBAC definitions - see "Important OpenShift concepts" and
"Users and Permissions" below).

ImportantImportant

Both the installation and upgrade processes require access to an OpenShift Container Platform cluster using an account with cluster-admin
permissions. From "Default cluster roles", a cluster-admin is "a super-user that can perform any action in any project. When bound to a user
with a local binding, they have full control over quota and every action on every resource in the project".

Architecture

The same concepts that have been included in the generic Kubernetes/PostgreSQL architecture page apply for OpenShift as well.

Here as well, the critical factor is the number of availability zones or data centers for your OpenShift environment.

As outlined in the "Disaster Recovery Strategies for Applications Running on OpenShift" blog article written by Raffaele Spazzoli back in 2020 about
stateful applications, in order to fully exploit EDB Postgres for Kubernetes, you need to plan, design and implement an OpenShift cluster spanning 3 or
more availability zones. While this doesn't pose an issue in most of the public cloud provider deployments, it is definitely a challenge in on-premise
scenarios.

If your OpenShift cluster has only one availability zoneone availability zone, the zone is your Single Point of Failure (SPoF) from a High Availability standpoint - provided that
you have wisely adopted a share-nothing architecture, making sure that your PostgreSQL clusters have at least one standby (two if using synchronous
replication), and that each PostgreSQL instance runs on a different Kubernetes worker node using different storage. Make sure that continuous backup
data is stored additionally in a storage service outside the OpenShift cluster, allowing you to perform Disaster Recovery operations beyond your data center.

Most likely you will have another OpenShift cluster in another data center, either in the same metropolitan area or in another region, in an active/passive
strategy. You can set up an independent "Replica cluster", with the understanding that this is primarily a Disaster Recovery solution - very effective but
with some limitations that require manual intervention, as explained in the feature page. The same solution can be applied to additional OpenShift clusters,
even in a cascading manner.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 389

https://www.openshift.com/products/container-platform
https://catalog.redhat.com/software/operators/detail/5fb41c88abd2a6f7dbe1b37b
https://docs.openshift.com/container-platform/4.16/authentication/using-rbac.html#default-roles_using-rbac
https://cloud.redhat.com/blog/disaster-recovery-strategies-for-applications-running-on-openshift

On the other hand, if your OpenShift cluster spans multiple availability zonesmultiple availability zones in a region, you can fully leverage the capabilities of the operator for
resilience and self-healing, and the region can become your SPoF, i.e. it would take a full region outage to bring down your cluster. Moreover, you can take
advantage of multiple OpenShift clusters in different regions by setting up replica clusters, as previously mentioned.

Reserving Nodes for PostgreSQL Workloads

For optimal performance and resource allocation in your PostgreSQL database operations, it is highly recommended to isolate PostgreSQL workloads by
dedicating specific worker nodes solely to postgres in production. This is particularly crucial whether you're operating in a single availability zone or a
multi-availability zone environment.

A worker node in OpenShift that is dedicated to running PostgreSQL workloads is commonly referred to as a Postgres nodePostgres node or postgres node.

This dedicated approach ensures that your PostgreSQL workloads are not competing for resources with other applications, leading to enhanced stability
and performance.

For further details, please refer to the "Reserving Nodes for PostgreSQL Workloads" section within the broader "Architecture" documentation. The primary
difference when working in OpenShift involves how labels and taints are applied to the nodes, as described below.

To label a node as a postgres node, execute the following command:

To apply a postgres taint to a node, use the following command:

By correctly labeling and tainting your nodes, you ensure that only PostgreSQL workloads are scheduled on these dedicated nodes via affinity and
tolerations, reinforcing the stability and performance of your database environment.

Important OpenShift concepts

To understand how the EDB Postgres for Kubernetes operator fits in an OpenShift environment, you must familiarize yourself with the following
Kubernetes-related topics:

Operators
Authentication
Authorization via Role-based Access Control (RBAC)
Service Accounts and Users
Rules, Roles and Bindings
Cluster RBAC vs local RBAC through projects

This is especially true in case you are not comfortable with the elevated permissions required by the default cluster-wide installation of the operator.

We have also selected the diagram below from the OpenShift documentation, as it clearly illustrates the relationships between cluster roles, local roles,
cluster role bindings, local role bindings, users, groups and service accounts.

oc label node <<NODE-NAME>> node-role.kubernetes.io/postgres=

oc adm taint node <<NODE-NAME>> node-
role.kubernetes.io/postgres=:NoSchedule

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 390

The "Predefined RBAC objects" section below contains important information about how EDB Postgres for Kubernetes adheres to Kubernetes and
OpenShift RBAC implementation, covering default installed cluster roles, roles, service accounts.

If you are familiar with the above concepts, you can proceed directly to the selected installation method. Otherwise, we recommend that you read the
following resources taken from the OpenShift documentation and the Red Hat blog:

"Operator Lifecycle Manager (OLM) concepts and resources"
"Understanding authentication"
"Role-based access control (RBAC)", covering rules, roles and bindings for authorization, as well as cluster RBAC vs local RBAC through projects
"Default project service accounts and roles"
"With Kubernetes Operators comes great responsibility" blog article

Cluster Service Version (CSV)

Technically, the operator is designed to run in OpenShift via the Operator Lifecycle Manager (OLM), according to the Cluster Service Version (CSV) defined
by EDB.

The CSV is a YAML manifest that defines not only the user interfaces (available through the web dashboard), but also the RBAC rules required by the
operator and the custom resources defined and owned by the operator (such as the Cluster one, for example). The CSV defines also the available
installModes for the operator, namely: AllNamespaces (cluster-wide), SingleNamespace (single project), MultiNamespace (multi-

project), and OwnNamespace .

There's more ...There's more ...

You can find out more about CSVs and install modes by reading "Operator group membership" and "Defining cluster service versions (CSVs)" from
the OpenShift documentation.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 391

https://docs.openshift.com/container-platform/4.16/operators/understanding/olm/olm-understanding-olm.html
https://docs.openshift.com/container-platform/4.16/authentication/understanding-authentication.html
https://docs.openshift.com/container-platform/4.16/authentication/using-rbac.html
https://docs.openshift.com/container-platform/4.16/authentication/using-service-accounts-in-applications.html#service-accounts-default_using-service-accounts
https://www.redhat.com/en/blog/kubernetes-operators-comes-great-responsibility
https://docs.openshift.com/container-platform/4.16/operators/understanding/olm/olm-understanding-operatorgroups.html#olm-operatorgroups-membership_olm-understanding-operatorgroups
https://docs.openshift.com/container-platform/4.16/operators/operator_sdk/osdk-generating-csvs.html

Limitations for multi-tenant management

Red Hat OpenShift Container Platform provides limited support for simultaneously installing different variations of an operator on a single cluster. Like any
other operator, EDB Postgres for Kubernetes becomes an extension of the control plane. As the control plane is shared among all tenants (projects) of an
OpenShift cluster, operators too become shared resources in a multi-tenant environment.

Operator Lifecycle Manager (OLM) can install operators multiple times in different namespaces, with one important limitation: they all need to share the
same API version of the operator.

For more information, please refer to "Operator groups" in OpenShift documentation.

Channels

EDB Postgres for Kubernetes is distributed through the following OLM channels, each serving a distinct purpose:

candidate : this channel provides early access to the next potential fast release. It includes the latest pre-release versions with new features
and fixes, but is considered experimental and not supported. Use this channel only for testing and validation purposes—not in productionnot in production
environmentsenvironments. Versions in candidate may not appear in other channels if no further updates are recommended.

fast : designed for users who want timely access to the latest stable features and patches. The head of the fast channel always points to the
latest patch releasepatch release of the latest minor releaseminor release of EDB Postgres for Kubernetes.

stable : similar to fast , but restricted to the latest minor releaseminor release currently under EDB’s Long Term Support (LTS) policy. Designed for users
who require predictable updates and official support while benefiting from ongoing stability and maintenance.

stable-vX.Y : tracks the latest patch release within a specific minor version (e.g., stable-v1.26). These channels are ideal for
environments that require version pinning and predictable updates within a stable minor release.

The fast and stable channels may span multiple minor versions, whereas each stable-vX.Y channel is limited to patch updates within a specific
minor release.

EDB Postgres for KubernetesEDB Postgres for Kubernetes follow trunk-based development and continuous delivery principles. As a result, we generally recommend using the fast
channel to stay current with the latest stable improvements and fixes.

Installation via web console

Ensuring access to EDB private registry

ImportantImportant

You'll need access to the private EDB repository where both the operator and operand images are stored. Access requires a valid EDB
subscription plan. Please refer to "Accessing EDB private image registries" for further details.

The OpenShift install will use pull secrets in order to access the operand and operator images, which are held in a private repository.

Once you have credentials to the private repository, you will need to create a pull secret in the openshift-operators namespace, named:

postgresql-operator-pull-secret , for the EDB Postgres for Kubernetes operator images

You can create each secret via the oc create command, as follows:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 392

https://docs.openshift.com/container-platform/4.16/operators/understanding/olm/olm-understanding-operatorgroups.html
https://olm.operatorframework.io/docs/best-practices/channel-naming/
https://www.enterprisedb.com/products/plans-comparison

where:

@@REPOSITORY@@ is the name of the repository, as explained in "Which repository to choose?"
@@TOKEN@@ is the repository token for your EDB account, as explained in "How to retrieve the token"

The EDB Postgres for Kubernetes operator can be found in the Red Hat OperatorHub directly from your OpenShift dashboard.

1. Navigate in the web console to the Operators -> OperatorHub page:

Scroll in the Database section or type a keyword into the Filter by keyword box (in this case, "PostgreSQL") to find the EDB Postgres for

oc create secret docker-registry postgresql-operator-pull-secret
\
 -n openshift-operators --docker-server==docker.enterprisedb.com \
 --docker-username=="@@REPOSITORY@@" \
 --docker-password=="@@TOKEN@@"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 393

2. Scroll in the Database section or type a keyword into the Filter by keyword box (in this case, "PostgreSQL") to find the EDB Postgres for
Kubernetes Operator, then select it:

3. Read the information about the Operator and select Install .

4. The following Operator installation page expects you to choose:

the installation mode: cluster-wide or single namespace installation
the update channel (see the "Channels" section for more information - if unsure, pick fast)
the approval strategy, following the availability on the market place of a new release of the operator, certified by Red Hat:
Automatic : OLM automatically upgrades the running operator with the new version
Manual : OpenShift waits for human intervention, by requiring an approval in the Installed Operators section

ImportantImportant

The process of the operator upgrade is described in the "Upgrades" section.

ImportantImportant

It is possible to install the operator in a single project (technically speaking: OwnNamespace install mode) multiple times in the same cluster.
There will be an operator installation in every namespace, with different upgrade policies as long as the API is the same (see "Limitations for
multi-tenant management").

Choosing cluster-wide vs local installation of the operator is a critical turning point. Trying to install the operator globally with an existing local installation
is blocked, by throwing the error below. If you want to proceed you need to remove every local installation of the operator first.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 394

Cluster-wide installation

With cluster-wide installation, you are asking OpenShift to install the Operator in the default openshift-operators namespace and to make it
available to all the projects in the cluster. This is the default and normally recommended approach to install EDB Postgres for Kubernetes.

WarningWarning

This doesn't mean that every user in the OpenShift cluster can use the EDB Postgres for Kubernetes Operator, deploy a Cluster object or even
see the Cluster objects that are running in their own namespaces. There are some special roles that users must have in the namespace in
order to interact with EDB Postgres for Kubernetes' managed custom resources - primarily the Cluster one. Please refer to the "Users and
Permissions" section below for details.

From the web console, select All namespaces on the cluster (default) as Installation mode :

As a result, the operator will be visible in every namespaces. Otherwise, as with any other OpenShift operator, check the logs in any pods in the
openshift-operators project on the Workloads → Pods page that are reporting issues to troubleshoot further.

BewareBeware

By choosing the cluster-wide installation you cannot easily move to a single project installation at a later time.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 395

Single project installation

With single project installation, you are asking OpenShift to install the Operator in a given namespace, and to make it available to that project only.

WarningWarning

This doesn't mean that every user in the namespace can use the EDB Postgres for Kubernetes Operator, deploy a Cluster object or even see
the Cluster objects that are running in the namespace. Similarly to the cluster-wide installation mode, there are some special roles that users
must have in the namespace in order to interact with EDB Postgres for Kubernetes' managed custom resources - primarily the Cluster one.
Please refer to the "Users and Permissions" section below for details.

From the web console, select A specific namespace on the cluster as Installation mode , then pick the target namespace (in our
example proj-dev):

As a result, the operator will be visible in the selected namespace only. You can verify this from the Installed operators page:

In case of a problem, from the Workloads → Pods page check the logs in any pods in the selected installation namespace that are reporting issues to
troubleshoot further.

BewareBeware

By choosing the single project installation you cannot easily move to a cluster-wide installation at a later time.

This installation process can be repeated in multiple namespaces in the same OpenShift cluster, enabling independent installations of the operator in
different projects. In this case, make sure you read "Limitations for multi-tenant management".

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 396

Installation via the oc CLI

ImportantImportant

Please refer to the "Installing the OpenShift CLI" section below for information on how to install the oc command-line interface.

Instead of using the OpenShift Container Platform web console, you can install the EDB Postgres for Kubernetes Operator from the OperatorHub and create
a subscription using the oc command-line interface. Through the oc CLI you can install the operator in all namespaces, a single namespace or multiple
namespaces.

WarningWarning

Multiple namespace installation is currently supported by OpenShift. However, definition of multiple target namespaces for an operator may be
removed in future versions of OpenShift.

This section primarily covers the installation of the operator in multiple projects with a simple example, by creating an OperatorGroup and a
Subscription objects.

InfoInfo

In our example, we will install the operator in the my-operators namespace and make it only available in the web-staging , web-prod ,
bi-staging , and bi-prod namespaces. Feel free to change the names of the projects as you like or add/remove some namespaces.

1. Check that the cloud-native-postgresql operator is available from the OperatorHub:

 oc get packagemanifests -n openshift-marketplace cloud-native-postgresql

2. Inspect the operator to verify the installation modes (MultiNamespace in particular) and the available channels:

 oc describe packagemanifests -n openshift-marketplace cloud-native-postgresql

3. Create an OperatorGroup object in the my-operators namespace so that it targets the web-staging , web-prod , bi-staging , and
bi-prod namespaces:

 apiVersion: operators.coreos.com/v1
 kind: OperatorGroup
 metadata:
 name: cloud-native-postgresql
 namespace: my-operators
 spec:
 targetNamespaces:
 - web-staging
 - web-prod
 - bi-staging
 - bi-prod

!!! Important Alternatively, you can list namespaces using a label selector, as explained in "Target namespace selection".

Create a Subscription object in the my-operators namespace to subscribe to the fast channel of the cloud-native-postgresql

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 397

https://docs.openshift.com/container-platform/4.16/operators/understanding/olm/olm-understanding-operatorgroups.html#olm-operatorgroups-target-namespace_olm-understanding-operatorgroups
https://docs.openshift.com/container-platform/4.16/operators/understanding/olm/olm-understanding-operatorgroups.html#olm-operatorgroups-target-namespace_olm-understanding-operatorgroups

4. Create a Subscription object in the my-operators namespace to subscribe to the fast channel of the cloud-native-postgresql
operator that is available in the certified-operators source of the openshift-marketplace (as previously located in steps 1 and 2):

 apiVersion: operators.coreos.com/v1alpha1
 kind: Subscription
 metadata:
 name: cloud-native-postgresql
 namespace: my-operators
 spec:
 channel: fast
 name: cloud-native-postgresql
 source: certified-operators
 sourceNamespace: openshift-marketplace

5. Use oc apply -f with the above YAML file definitions for the OperatorGroup and Subscription objects.

The method described in this section can be very powerful in conjunction with proper RoleBinding objects, as it enables mapping EDB Postgres for
Kubernetes' predefined ClusterRole s to specific users in selected namespaces.

InfoInfo

The above instructions can also be used for single project binding. The only difference is the number of specified target namespaces (one) and,
possibly, the namespace of the operator group (ideally, the same as the target namespace).

The result of the above operation can also be verified from the webconsole, as shown in the image below.

Cluster-wide installation with oc

If you prefer, you can also use oc to install the operator globally, by taking advantage of the default OperatorGroup called global-operators in
the openshift-operators namespace, and create a new Subscription object for the cloud-native-postgresql operator in the same
namespace:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 398

Once you run oc apply -f with the above YAML file, the operator will be available in all namespaces.

Installing the OpenShift CLI (oc)

The oc command represents the OpenShift command-line interface (CLI). It is highly recommended to install it on your system. Below you find a basic set
of instructions to install oc from your OpenShift dashboard.

First, select the question mark at the top right corner of the dashboard:

Then follow the instructions you are given, by downloading the binary that suits your needs in terms of operating system and architecture:

apiVersion::
operators.coreos.com/v1alpha1
kind:: Subscription
metadata::
 name:: cloud-native-
postgresql
 namespace:: openshift-operators
spec::
 channel:: fast
 name:: cloud-native-
postgresql
 source:: certified-operators
 sourceNamespace:: openshift-marketplace

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 399

OpenShift CLIOpenShift CLI

For more detailed and updated information, please refer to the official OpenShift CLI documentation directly maintained by Red Hat.

Predefined RBAC objects

EDB Postgres for Kubernetes comes with a predefined set of resources that play an important role when it comes to RBAC policy configuration.

Custom Resource Definitions (CRD)

The EDB Postgres for Kubernetes operator owns the following custom resource definitions (CRD):

Backup
Cluster
Pooler
ScheduledBackup
ImageCatalog
ClusterImageCatalog

You can verify this by running:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 400

https://docs.openshift.com/container-platform/4.16/cli_reference/openshift_cli/getting-started-cli.html

which returns something similar to:

backups.postgresql.k8s.enterprisedb.io 20YY-MM-DDTHH:MM:SSZ
clusterimagecatalogs.postgresql.k8s.enterprisedb.io 20YY-MM-DDTHH:MM:SSZ
clusters.postgresql.k8s.enterprisedb.io 20YY-MM-DDTHH:MM:SSZ
imagecatalogs.postgresql.k8s.enterprisedb.io 20YY-MM-DDTHH:MM:SSZ
poolers.postgresql.k8s.enterprisedb.io 20YY-MM-DDTHH:MM:SSZ
scheduledbackups.postgresql.k8s.enterprisedb.io 20YY-MM-DDTHH:MM:SSZ

Service accounts

The namespace where the operator has been installed (by default openshift-operators) contains the following predefined service accounts:
builder , default , deployer , and most importantly postgresql-operator-manager (managed by the CSV).

ImportantImportant

Service accounts in Kubernetes are namespaced resources. Unless explicitly authorized, a service account cannot be accessed outside the
defined namespace.

You can verify this by running:

which returns something similar to:

NAME SECRETS AGE
builder 2 ...
default 2 ...
deployer 2 ...
postgresql-operator-manager 2 ...

The default service account is automatically created by Kubernetes and present in every namespace. The builder and deployer service accounts
are automatically created by OpenShift (see "Default project service accounts and roles").

The postgresql-operator-manager service account is the one used by the Cloud Native PostgreSQL operator to work as part of the
Kubernetes/OpenShift control plane in managing PostgreSQL clusters.

ImportantImportant

Do not delete the postgresql-operator-manager ServiceAccount as it can stop the operator from working.

Cluster roles

The Operator Lifecycle Manager (OLM) automatically creates a set of cluster role objects to facilitate role binding definitions and granular implementation
of RBAC policies. Some cluster roles have rules that apply to Custom Resource Definitions that are part of EDB Postgres for Kubernetes, while others that
are part of the broader Kubernetes/OpenShift realm.

oc get customresourcedefinitions.apiextensions.k8s.io || grep
postgresql

oc get serviceaccounts -n openshift-
operators

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 401

https://docs.openshift.com/container-platform/4.16/authentication/using-service-accounts-in-applications.html#default-service-accounts-and-roles_using-service-accounts

Cluster roles on EDB Postgres for Kubernetes CRDs

For every CRD owned by EDB Postgres for Kubernetes' CSV, OLM deploys some predefined cluster roles that can be used by customer facing users and
service accounts. In particular:

a role for the full administration of the resource (admin suffix)
a role to edit the resource (edit suffix)
a role to view the resource (view suffix)
a role to view the actual CRD (crdview suffix)

ImportantImportant

Cluster roles per se are no security threat. They are the recommended way in OpenShift to define templates for roles to be later "bound" to actual
users in a specific project or globally. Indeed, cluster roles can be used in conjunction with ClusterRoleBinding objects for global
permissions or with RoleBinding objects for local permissions. This makes it possible to reuse cluster roles across multiple projects while
enabling customization within individual projects through local roles.

You can verify the list of predefined cluster roles by running:

which returns something similar to:

backups.postgresql.k8s.enterprisedb.io-v1-admin YYYY-MM-DDTHH:MM:SSZ
backups.postgresql.k8s.enterprisedb.io-v1-crdview YYYY-MM-DDTHH:MM:SSZ
backups.postgresql.k8s.enterprisedb.io-v1-edit YYYY-MM-DDTHH:MM:SSZ
backups.postgresql.k8s.enterprisedb.io-v1-view YYYY-MM-DDTHH:MM:SSZ
cloud-native-postgresql.VERSION-HASH YYYY-MM-DDTHH:MM:SSZ
clusterimagecatalogs.postgresql.k8s.enterprisedb.io-v1-admin YYYY-MM-DDTHH:MM:SSZ
clusterimagecatalogs.postgresql.k8s.enterprisedb.io-v1-crdview YYYY-MM-DDTHH:MM:SSZ
clusterimagecatalogs.postgresql.k8s.enterprisedb.io-v1-edit YYYY-MM-DDTHH:MM:SSZ
clusterimagecatalogs.postgresql.k8s.enterprisedb.io-v1-view YYYY-MM-DDTHH:MM:SSZ
clusters.postgresql.k8s.enterprisedb.io-v1-admin YYYY-MM-DDTHH:MM:SSZ
clusters.postgresql.k8s.enterprisedb.io-v1-crdview YYYY-MM-DDTHH:MM:SSZ
clusters.postgresql.k8s.enterprisedb.io-v1-edit YYYY-MM-DDTHH:MM:SSZ
clusters.postgresql.k8s.enterprisedb.io-v1-view YYYY-MM-DDTHH:MM:SSZ
imagecatalogs.postgresql.k8s.enterprisedb.io-v1-admin YYYY-MM-DDTHH:MM:SSZ
imagecatalogs.postgresql.k8s.enterprisedb.io-v1-crdview YYYY-MM-DDTHH:MM:SSZ
imagecatalogs.postgresql.k8s.enterprisedb.io-v1-edit YYYY-MM-DDTHH:MM:SSZ
imagecatalogs.postgresql.k8s.enterprisedb.io-v1-view YYYY-MM-DDTHH:MM:SSZ
poolers.postgresql.k8s.enterprisedb.io-v1-admin YYYY-MM-DDTHH:MM:SSZ
poolers.postgresql.k8s.enterprisedb.io-v1-crdview YYYY-MM-DDTHH:MM:SSZ
poolers.postgresql.k8s.enterprisedb.io-v1-edit YYYY-MM-DDTHH:MM:SSZ
poolers.postgresql.k8s.enterprisedb.io-v1-view YYYY-MM-DDTHH:MM:SSZ
scheduledbackups.postgresql.k8s.enterprisedb.io-v1-admin YYYY-MM-DDTHH:MM:SSZ
scheduledbackups.postgresql.k8s.enterprisedb.io-v1-crdview YYYY-MM-DDTHH:MM:SSZ
scheduledbackups.postgresql.k8s.enterprisedb.io-v1-edit YYYY-MM-DDTHH:MM:SSZ
scheduledbackups.postgresql.k8s.enterprisedb.io-v1-view YYYY-MM-DDTHH:MM:SSZ

You can inspect an actual role as any other Kubernetes resource with the get command. For example:

By looking at the relevant skimmed output below, you can notice that the clusters.postgresql.k8s.enterprisedb.io-v1-admin cluster
role enables everything on the cluster resource defined by the postgresql.k8s.enterprisedb.io API group:

oc get clusterroles || grep
postgresql

oc get -o yaml clusterrole clusters.postgresql.k8s.enterprisedb.io-v1-
admin

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 402

There's more ...There's more ...

If you are interested in the actual implementation of RBAC by an OperatorGroup, please refer to the "OperatorGroup: RBAC" section from the
Operator Lifecycle Manager documentation.

Cluster roles on Kubernetes CRDs

When installing a Subscription object in a given namespace (e.g. openshift-operators for cluster-wide installation of the operator), OLM also
creates a cluster role that is used to grant permissions to the postgresql-operator-manager service account that the operator uses. The name of
this cluster role varies, as it depends on the installed version of the operator and the time of installation.

You can retrieve it by running the following command:

You can then use the name returned by the above query (which should have the form of cloud-native-postgresql.VERSION-HASH) to look at the
rules, resources and verbs via the describe command:

Name: cloud-native-postgresql.VERSION.HASH
Labels: olm.owner=cloud-native-postgresql.VERSION
 olm.owner.kind=ClusterServiceVersion
 olm.owner.namespace=openshift-operators
 operators.coreos.com/cloud-native-postgresql.openshift-operators=
Annotations: <none>
PolicyRule:
 Resources Non-Resource URLs Resource Names Verbs
 --------- ----------------- -------------- -----
 configmaps [] [] [create
delete get list patch update watch]
 secrets [] [] [create
delete get list patch update watch]
 services [] [] [create
delete get list patch update watch]
 deployments.apps [] [] [create
delete get list patch update watch]
 poddisruptionbudgets.policy [] [] [create
delete get list patch update watch]
 backups.postgresql.k8s.enterprisedb.io [] [] [create
delete get list patch update watch]
 clusters.postgresql.k8s.enterprisedb.io [] [] [create

apiVersion:: rbac.authorization.k8s.io/v1
kind::
ClusterRole
metadata::
 name:: clusters.postgresql.k8s.enterprisedb.io-v1-admin
rules::
-- apiGroups::
 -- postgresql.k8s.enterprisedb.io
 resources::
 --
clusters
 verbs::
 -- '*'

oc get clusterrole --
selector==olm.owner.kind=ClusterServiceVersion

oc describe clusterrole cloud-native-postgresql.VERSION-
HASH

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 403

https://olm.operatorframework.io/docs/concepts/crds/operatorgroup/#rbac

delete get list patch update watch]
 poolers.postgresql.k8s.enterprisedb.io [] [] [create
delete get list patch update watch]
 scheduledbackups.postgresql.k8s.enterprisedb.io [] [] [create
delete get list patch update watch]
 persistentvolumeclaims [] [] [create
delete get list patch watch]
 pods/exec [] [] [create
delete get list patch watch]
 pods [] [] [create
delete get list patch watch]
 jobs.batch [] [] [create
delete get list patch watch]
 podmonitors.monitoring.coreos.com [] [] [create
delete get list patch watch]
 serviceaccounts [] [] [create get
list patch update watch]
 rolebindings.rbac.authorization.k8s.io [] [] [create get
list patch update watch]
 roles.rbac.authorization.k8s.io [] [] [create get
list patch update watch]
 leases.coordination.k8s.io [] [] [create get
update]
 events [] [] [create
patch]
 mutatingwebhookconfigurations.admissionregistration.k8s.io [] [] [get list
update]
 validatingwebhookconfigurations.admissionregistration.k8s.io [] [] [get list
update]
 customresourcedefinitions.apiextensions.k8s.io [] [] [get list
update]
 namespaces [] [] [get list
watch]
 nodes [] [] [get list
watch]
 clusters.postgresql.k8s.enterprisedb.io/status [] [] [get patch
update watch]
 poolers.postgresql.k8s.enterprisedb.io/status [] [] [get patch
update watch]
 configmaps/status [] [] [get patch
update]
 secrets/status [] [] [get patch
update]
 backups.postgresql.k8s.enterprisedb.io/status [] [] [get patch
update]
 scheduledbackups.postgresql.k8s.enterprisedb.io/status [] [] [get patch
update]
 pods/status [] [] [get]
 clusters.postgresql.k8s.enterprisedb.io/finalizers [] [] [update]
 poolers.postgresql.k8s.enterprisedb.io/finalizers [] [] [update]

ImportantImportant

The above permissions are exclusively reserved for the operator's service account to interact with the Kubernetes API server. They are not directly
accessible by the users of the operator that interact only with Cluster , Pooler , Backup , and ScheduledBackup resources (see
"Cluster roles on EDB Postgres for Kubernetes CRDs").

The operator automates in a declarative way a lot of operations related to PostgreSQL management that otherwise would require manual and imperative
interventions. Such operations also include security related matters at RBAC (e.g. service accounts), pod (e.g. security context constraints) and Postgres
levels (e.g. TLS certificates).

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 404

For more information about the reasons why the operator needs these elevated permissions, please refer to the "Security / Cluster / RBAC" section.

Users and Permissions

A very common way to use the EDB Postgres for Kubernetes operator is to rely on the cluster-admin role and manage resources centrally.

Alternatively, you can use the RBAC framework made available by Kubernetes/OpenShift, as with any other operator or resources.

For example, you might be interested in binding the clusters.postgresql.k8s.enterprisedb.io-v1-admin cluster role to specific groups or
users in a specific namespace, as any other cloud native application. The following example binds that cluster role to a specific user in the web-prod
project:

The same process can be repeated with any other predefined ClusterRole .

If, on the other hand, you prefer not to use cluster roles, you can create specific namespaced roles like in this example:

Then, assign this role to a given user:

kind::
RoleBinding
apiVersion:: rbac.authorization.k8s.io/v1
metadata::
 name:: web-prod-admin
 namespace:: web-prod
subjects::
 -- kind:: User
 apiGroup:: rbac.authorization.k8s.io
 name:: mario@cioni.org
roleRef::
 apiGroup:: rbac.authorization.k8s.io
 kind::
ClusterRole
 name:: clusters.postgresql.k8s.enterprisedb.io-v1-admin

apiVersion:: rbac.authorization.k8s.io/v1
kind:: Role
metadata::
 name:: web-prod-view
 namespace:: web-prod
rules::
-- apiGroups::
 -- postgresql.k8s.enterprisedb.io
 resources::
 --
clusters
 verbs::
 --
get
 -- list
 -- watch

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 405

This final example creates a role with administration permissions (verbs is equal to *) to all the resources managed by the operator in that namespace
(web-prod):

Pod Security Standards

EDB Postgres for Kubernetes on OpenShift works with the restricted-v2 SCC (SecurityContextConstraints).

Since the operator has been developed with a security focus from the beginning, in addition to always adhering to the Red Hat Certification process, EDB
Postgres for Kubernetes works under the new SCCs introduced in OpenShift 4.11.

By default, EDB Postgres for Kubernetes will drop all capabilities. This ensures that during its lifecycle the operator will never make use of any unsafe
capabilities.

On OpenShift we inherit the SecurityContext.SeccompProfile for each Pod from the OpenShift deployment, which in turn is set by the Pod
Security Admission Controller.

NoteNote

Even if nonroot-v2 and hostnetwork-v2 are qualified as less restricted SCCs, we don't run tests on them, and therefore we cannot
guarantee that these SCCs will work. That being said, nonroot-v2 and hostnetwork-v2 are a subset of rules in restricted-v2 so
there is no reason to believe that they would not work.

apiVersion:: rbac.authorization.k8s.io/v1
kind::
RoleBinding
metadata::
 name:: web-prod-view
 namespace:: web-prod
roleRef::
 apiGroup:: rbac.authorization.k8s.io
 kind:: Role
 name:: web-prod-view
subjects::
-- apiGroup:: rbac.authorization.k8s.io
 kind:: User
 name:: web-prod-developer1

apiVersion:: rbac.authorization.k8s.io/v1
kind:: Role
metadata::
 name:: web-prod-admin
 namespace:: web-prod
rules::
-- apiGroups::
 -- postgresql.k8s.enterprisedb.io
 resources::
 --
clusters
 -- backups
 --
scheduledbackups
 -- poolers
 verbs::
 -- '*'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 406

Customization of the Pooler image

By default, the Pooler resource creates pods having the pgbouncer container that runs with the quay.io/enterprisedb/pgbouncer image.

There's moreThere's more

For more details about pod customization for the pooler, please refer to the "Pod templates" section in the connection pooling documentation.

You can change the image name from the advanced interface, specifically by opening the "Template" section, then selecting "Add container" under "Spec >
Containers":

Then:

set pgbouncer as the name of the container (required field in the pod template)
set the "Image" field as desired (see the image below)

OADP for Velero

The EDB Postgres for Kubernetes operator recommends the use of the Openshift API for Data Protection operator for managing Velero in OpenShift
environments. Specific details about how EDB Postgres for Kubernetes integrates with Velero can be found in the Velero section of the Addons
documentation. The OADP operator is a community operator that is not directly supported by EDB. The OADP operator is not required to use Velero with
EDB Postgres but is a convenient way to install Velero on OpenShift.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 407

https://github.com/openshift/oadp-operator
https://velero.io/
https://docs.openshift.com/container-platform/latest/backup_and_restore/application_backup_and_restore/installing/about-installing-oadp.html

Monitoring and metrics

OpenShift includes a Prometheus installation out of the box that can be leveraged for user-defined projects, including EDB Postgres for Kubernetes.

Grafana integration is out of scope for this guide, as Grafana is no longer included with OpenShift.

In this section, we show you how to get started with basic observability, leveraging the default OpenShift installation.

Please refer to the OpenShift monitoring stack overview for further background.

Depending on your OpenShift configuration, you may need to do a bit of setup before you can monitor your EDB Postgres for Kubernetes clusters.

You will need to have your OpenShift configured to enable monitoring for user-defined projects.

You should check, perhaps with your OpenShift administrator, if your installation has the cluster-monitoring-config configMap, and if so, if user
workload monitoring is enabled.

You can check for the presence of this configMap (note that it should be in the openshift-monitoring namespace):

To enable user workload monitoring, you might want to oc apply or oc edit the configmap to look something like this:

After enableUserWorkload is set, several monitoring components will be created in the openshift-user-workload-monitoring
namespace.

You should now be able to see metrics from any cluster enabling them.

For example, we can create the following cluster with monitoring on the foo namespace:

oc -n openshift-monitoring get configmap cluster-monitoring-
config

apiVersion:: v1
kind:: ConfigMap
metadata::
 name:: cluster-monitoring-
config
 namespace:: openshift-monitoring
data::
 config.yaml::
|
 enableUserWorkload:
true

$ oc -n openshift-user-workload-monitoring get
pod
NAME READY STATUS RESTARTS
AGE
prometheus-operator-58768d7cc-28xb5 2/2 Running 0
5h10m
prometheus-user-workload-0 6/6 Running 0
5h10m
prometheus-user-workload-1 6/6 Running 0
5h10m
thanos-ruler-user-workload-0 3/3 Running 0
5h10m
thanos-ruler-user-workload-1 3/3 Running 0
5h10m

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 408

https://prometheus.io/
https://docs.openshift.com/container-platform/4.16/observability/monitoring/monitoring-overview.html
https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

You should now be able to query for the default metrics that will be installed with this example. In the Observe section of OpenShift (in Developer
perspective), you should see a Metrics submenu where you can write PromQL queries. Auto-complete is enabled, so you can peek the cnp_ prefix:

It is easy to define Alerts based on the default metrics as PrometheusRules . You can find some examples of rules in the prometheusrule.yaml file,
which you can download.

Before applying the rules, again, some OpenShift setup may be necessary.

The monitoring-rules-edit or at least monitoring-rules-view roles should be assigned for the user wishing to apply and monitor the rules.

This involves creating a RoleBinding with that permission, for a namespace. Again, refer to the relevant OpenShift document page for further detail.
Specifically, the Granting user permissions by using the web console section should be of interest.

kubectl apply -n foo -f -
<<EOF<<EOF

apiVersion: postgresql.k8s.enterprisedb.io/v1
kind: Cluster
metadata:
 name: cluster-with-
metrics
spec:
 instances:
3

storage:
 size:
1Gi

monitoring:
 enablePodMonitor: true
EOFEOF

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 409

https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/monitoring/prometheusrule.yaml
https://docs.openshift.com/container-platform/4.16/observability/monitoring/enabling-monitoring-for-user-defined-projects.html

Note that the RoleBinding for monitoring-rules-edit applies to a namespace, so make sure you get the right one/ones.

Suppose that the cnp-prometheusrule.yaml file that you have previouly downloaded now contains your alerts. You can install those rules as
follows:

Now you should be able to see Alerts, if there are any. Note that initially there might be no alerts.

Alert routing and notifications are beyond the scope of this guide.

oc apply -n foo -f cnp-
prometheusrule.yaml

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 410

50 Transparent Data Encryption (TDE)

ImportantImportant

TDE is available only for operands that support it: EPAS and PG Extended, versions 15 and newer.

Transparent Data Encryption, or TDE, is a technology used by several database vendors to encrypt data at restencrypt data at rest, i.e. database files on disk. TDE does not
however encrypt data in use.

TDE is included in EDB Postgres Advanced Server and EDB Postgres Extended Server from version 15, and is supported by the EDB Postgres for Kubernetes
operator.

ImportantImportant

Before you proceed, please take some time to familiarize with the TDE feature in the EPAS documentation.

With TDE activated, both WAL files and files for tables will be encrypted. Data encryption/decryption is entirely transparent to the user, as it is managed by
the database without requiring any application changes or updated client drivers.

NoteNote

In the code samples shown below, the epas sub-section of postgresql in the YAML manifests is used to activate TDE. The epas section
can be used to enable TDE for PG Extended images as well as for EPAS images.

EDB Postgres for Kubernetes provides 3 ways to use TDE:

using a secret containing the passphrase
using a secret containing a custom passphrase command
using a pair of secrets containing custom wrap/unwrap commands

Passphrase secret

The basic approach is to store the passphrase in a Kubernetes secret. Such a passphrase will be used to encrypt the EPAS binary key.

EPAS documentationEPAS documentation

Please refer to the EPAS documentation for details on the EPAS encryption key.

Activating TDE on the operator is simple. In the epas section of the manifest, use the tde stanza to enable TDE, and set the Kubernetes secret that will
hold the TDE encryption key.

For example:

You can find an example in cluster-example-tde.yaml .

 [[…]]
 postgresql::
 epas::
 tde::
 enabled:: true
 secretKeyRef::
 name:: tde-key
 key::
key

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 411

https://www.enterprisedb.com/docs/tde/latest/
https://www.enterprisedb.com/docs/tde/latest/secure_key/
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-tde.yaml

NoteNote

This file also contains the definition of the secret to hold the encryption key. Look at the following section for an example on how to create a
secret for this purpose.

The key stored in the secret will be used as the pass-phrase to invoke openssl to wrap/unwrap the EPAS encryption key.

How to create the secret containing the passphrase

First choose the passphrase. While it is recommended to use a randomly generated passphrase, in this example we will use PostgresRocks as
passphrase, and rely on kubectl to generate for us the secret definition:

kubectl create secret generic -o yaml tde-key \
 --from-literal=key=PostgresRocks

This should return something like this:

Remember to run kubectl apply or remove the -o yaml option to the create command above to actually create the secret in the cluster.

Custom passphrase command

Instead of the secretKeyRef in the cluster manifest snippet above, it is possible to specify a passphraseCommand stored in a secret. The
passphrase command can be run to generate a passphrase to be used with openssl .

The passphrase command should write to standard output. For example, we could simply use echo my-passphrase .

The passphrase generated by the command will be used the same way the secretKeyRef was used, i.e. as a passphrase argument for openssl .

apiVersion:: v1
data::
 key:: UG9zdGdyZXNSb2Nrcw==
kind::
Secret
metadata::
 creationTimestamp:: "YYYY-MM-DDTHH:MM:SSZ"
 name:: tde-key
 namespace:: default
 resourceVersion::
 uid::
type::
Opaque

 [[…]]
 postgresql::
 epas::
 tde::
 enabled:: true
 passphraseCommand::
 name:: tde-passphrase
 key:: command

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 412

Custom wrap/unwrap commands

It is also possible to specify the wrap and unwrap commands, rather than rely on the default invocation of openssl . This can be done by creating secrets
containing the custom commands, and declaring those secrets in the tde stanza.

The snippet below shows a cluster with TDE enabled using custom commands.

The custom commands need to obey the following conventions:

1. The custom wrap command should accept input from standard input, which EPAS will use to feed it the binary key. It should write to a file via an
explicit argument (not shell redirections). Moreover, the file argument should be given the string "%p", which is a placeholder EPAS will use to pass
the file path of the new, wrapped encryption key file.

2. The custom unwrap command should write to standard output. It should have an explicit file path argument for input (not shell redirections). Again,
the file argument should be given the string "%p", which is the placeholder EPAS will fill in with the wrapped encryption key file path.

For example:

wrap command: openssl enc -aes-128-cbc -pass pass:temp-pass -e -out %p
unwrap command: openssl enc -aes-128-cbc -pass pass:temp-pass -d -in %p

Example using HashiCorp Vault

The following example shows how to use HashiCorp Vault to store the encryption key and use it to activate TDE. The vault CLI is used to interact with
Vault and is included by default in the EDB Postgres Advanced Server (EPAS) image.

First, wherever you have vault running you must enable the Transit secrets engine and create a key:

vault secrets enable transit
vault write -f transit/keys/pg-tde

Then, create a secret containing the custom wrap/unwrap commands. The wrap and unwrap commands will 'wrap' a binary that is in the EPAS image. The
binary will interact with the vault API to encrypt/decrypt the EPAS encryption.

The binary needs 5 flags: --file , --host , --secret , --key and --vault-endpoint . The --host flag is in the format of
http://vault-host:vault-port and needs to be provided to reach the Vault. The server--secret flag is the name of the Kubernetes secret that

contains the vault token and the --key flag is the key in that secret pointing the vault token. The --vault-endpoint flag is the name of the key that
was created inside vault; in the example above it is pg-tde .

If running the Vault operator in Kubernetes the root token can be obtained from the following two commands:

kubectl exec vault-0 -- vault operator init -key-shares=1 -key-threshold=1 -format=json > cluster-keys.json
cat cluster-keys.json | jq -r ".root_token"

 [[…]]
 postgresql::
 epas::
 tde::
 enabled:: true
 wrapCommand::
 name:: tde-wrap-command
 key:: command
 unwrapCommand::
 name:: tde-unwrap-command
 key:: command

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 413

kubectl create secret generic -o yaml vault-token \
 --from-literal=wrap="/bin/vault wrap --file %p --host http://vault:8200 --secret vault-token --key
token --vault-endpoint pg-tde" \
 --from-literal=unwrap="/bin/vault unwrap --file %p --host http://vault:8200 --secret vault-token --key
token --vault-endpoint pg-tde" \
 --from-literal=token="hvs.whatever"

You can now create a Cluster that is referencing the secrets:

Enable TLS

The binary needs 6 flags: --file , --host , --secret , --key , --vault-endpoint and --enable-tls . The --host flag is in the format
of http://vault-host:vault-port and needs to be provided to reach the Vault. The server--secret flag is the name of the Kubernetes secret
that contains the vault token and the --key flag is the key in that secret pointing the vault token. The --vault-endpoint flag is the name of the key
that was created inside vault; in the example above it is pg-tde . To enable TLS, --enable-tls must be set to true .

kubectl create secret generic -o yaml vault-token \
 --from-literal=wrap="/bin/vault wrap --file %p --host http://vault:8200 --secret vault-token --key
token --vault-endpoint pg-tde --enable-tls true" \
 --from-literal=unwrap="/bin/vault unwrap --file %p --host http://vault:8200 --secret vault-token --key
token --vault-endpoint pg-tde --enable-tls true" \
 --from-literal=token="hvs.whatever"

Then, specify the environment variables in a secret or configMap.

kubectl create secret generic -o yaml env-var-secret \
--from-literal=VAULT_CACERT="/projected/certificate/vault-ca.pem" \

Reference the secret in the Cluster spec envFrom section, so that the binary can use the environment variables, as they will be injected in the pods. If one
or more environment variables refers to files, rely on the projectedVolumeTemplate to mount custom files, and on secrets or configmaps for their
contents. Following the example, the values of the tls-vault-secret key ca is mounted as file into the path
/projected/certificate/vault-ca.pem .

kubectl create secret generic -o yaml tls-vault-secret --from-file=ca=vault-ca.crt

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: hashicorp-vault-tde
spec::
 instances:: 3
 storage::
 size::
1Gi
 postgresql::
 epas::
 tde::
 enabled:: true
 wrapCommand::
 name:: vault-
token
 key:: wrap
 unwrapCommand::
 name:: vault-
token
 key::
unwrap

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 414

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: hashicorp-vault-tde
spec::
 envFrom::
 -- secretRef::
 name:: env-var-secret
 projectedVolumeTemplate::
 sources::
 -- secret::
 name:: tls-vault-secret
 items::
 -- key:: ca
 path:: certificate/vault-ca.pem
 instances:: 3
 storage::
 size::
1Gi
 postgresql::
 epas::
 tde::
 enabled:: true
 wrapCommand::
 name:: vault-
token
 key:: wrap
 unwrapCommand::
 name:: vault-
token
 key::
unwrap

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 415

51 Add-ons

EDB Postgres for Kubernetes supports add-ons that can be enabled on a per-cluster basis. These add-ons are:

1. External backup adapter
2. Kasten
3. Velero

InfoInfo

If you are planning to use Velero in OpenShift, please refer to the OADP section in the Openshift documentation.

All add-ons will automatically be available to the operator and to be used will need to be enabled at the cluster level via the
k8s.enterprisedb.io/addons annotation.

External Backup Adapter

The external backup adapter add-ons provide a generic way to integrate EDB Postgres for Kubernetes in a third-party tool for backups through
customizable ways to identify via labels and/or annotations:

which PVC group to backup
which PVCs to exclude, in case the cluster has one or more active replicas
the Pod running the PostgreSQL instance that has been selected for the backup (a standby or, if not available, the primary)

You can choose between two add-ons that only differ from each other for the way they allow you to configure the adapter for your backup system:

external-backup-adapter : in case you want to customize the behavior at the operator's configuration level via either a config map or a
secret - and share it with all the Postgres clusters that are managed by the operator's deployment (see the external-backup-adapter section
below)
external-backup-adapter-cluster : in case you want to customize the behavior of the adapter at the Postgres cluster level, through a

specific annotation (see the external-backup-adapter-cluster section below)

Such add-ons allow you to define the names of the annotations that will contain the commands to be run before or after taking a backup in the pod selected
by the operator.

As a result, any third-party backup tool for Kubernetes can rely on the above to coordinate itself with a PostgreSQL cluster, or a set of them.

Recovery simply relies on the operator to reconcile the cluster from an existing PVC group.

ImportantImportant

The External Backup Adapter is not a tool to perform backups. It simply provides a generic interface that any third-party backup tool in the
Kubernetes space can use. Such tools are responsible for safely storing the PVC and/or the content, and make it available at recovery time
together with all the necessary resource definitions of your Kubernetes cluster.

Customizing the adapter

As mentioned above, the adapter can be configured in two ways, which then determines the actual add-on you need to use in your Cluster resource.

If you are planning to define the same behavior for all the Postgres Cluster resources managed by the operator, we recommend that you use the
external-backup-adapter add-on, and configure the annotations/labels in the operator's configuration.

If you are planning to have different behaviors for a subset of the Postgres Cluster resources that you have, we recommend that you use the
external-backup-adapter-cluster add-on.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 416

Both add-ons share the same capabilities in terms of customization, which needs to be defined as a YAML object having the following keys:

electedResourcesDecorators
excludedResourcesDecorators
excludedResourcesSelector
backupInstanceDecorators
preBackupHookConfiguration
postBackupHookConfiguration

Each section is explained below. Further down you'll find the instructions on how to customize each of the two add-ons, with some examples.

The electedResourcesDecorators section

This section allows you to configure an array of labels and/or annotations that will be put on every elected PVC group.

Each element of the array must have the following fields:

key : the name of the key for the label or annotation

metadataType : the type of metadata, either "label" or "annotation"

value : the value that will be assigned to the label or annotation

The excludedResourcesDecorators section

This section allows you to configure an array of labels and/or annotations that will be placed on every excluded pod and PVC.

Each element of the array must have the same fields as the electedResourcesDecorators section above.

The excludedResourcesSelector section

This section selects Pods and PVCs that are applied to the excludedResourcesDecorators . It accepts a label selector rule as value. When empty, all
the Pods and every PVC that is not elected will be excluded.

The backupInstanceDecorators section

This section allows you to configure an array of labels and/or annotations that will be placed on the instance that has been selected for the backup by the
operator and which contains the hooks to be run.

Each element of the array must have the same fields as the electedResourcesDecorators section above.

The preBackupHookConfiguration section

This section allows you to control the names of the annotations in which the operator will place the name of the container, the command to run before
taking the backup, and the command to run in case of error/abort on the third-party tool side. Such metadata will be applied on the instance that's been
selected by the operator for the backup (see backupInstanceDecorators above).

The following fields must be provided:

container : Specifies where to place the information about the container that will run the pre-backup command. The container name is a fixed value
and cannot be configured. Will be saved in the annotations. To decorate the pod with hooks refer to: instanceWithHookDecorators

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 417

https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-selectors

command : Specifies where to place the information about the command that will be executed before the backup is taken. The command that will be
executed is a fixed value and cannot be configured. Will be saved in the annotations. To decorate the pod with hooks refer to:
instanceWithHookDecorators

onError : Specifies where to place the information about the command that will be executed in case of an error. The command that will be executed is a
fixed value and cannot be configured. Will be saved in the annotations. To decorate the pod with hooks refer to: instanceWithHookDecorators

The postBackupHookConfiguration section

This section allows you to control the names of the annotations in which the operator will place the name of the container and the command to run after
taking the backup. Such metadata will be applied on the instance that's been selected by the operator for the backup (see
backupInstanceDecorators above).

The following fields must be provided:

container : Specifies where to place the information about the container that will run the post-backup command. The container name is a fixed value
and cannot be configured. Will be saved in the annotations. To decorate the pod with hooks refer to: instanceWithHookDecorators

command : Specifies where to place the information about the command that will be executed after the backup is taken. The command that will be
executed is a fixed value and cannot be configured. Will be saved in the annotations. To decorate the pod with hooks refer to:
instanceWithHookDecorators

The external-backup-adapter add-on

The external-backup-adapter add-on can be entirely configured at operator's level via the EXTERNAL_BACKUP_ADDON_CONFIGURATION field
in the operator's ConfigMap / Secret .

For more information, please refer to the provided sample file at the end of this section, or the example below:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 418

The add-on can be activated by adding the following annotation to the Cluster resource:

The external-backup-adapter-cluster add-on

apiVersion:: v1
kind:: ConfigMap
metadata::
 name:: postgresql-operator-controller-manager-
config
 namespace:: postgresql-operator-
system
data::
 #
...
 EXTERNAL_BACKUP_ADDON_CONFIGURATION: : |-
 electedResourcesDecorators:
 - key:
"app.example.com/elected"
 metadataType: "label"
 value:
"true"
 excludedResourcesSelector:
app=xyz,env=prod
 excludedResourcesDecorators:
 - key:
"app.example.com/excluded"
 metadataType: "label"
 value:
"true"
 - key: "app.example.com/excluded-
reason"
 metadataType: "annotation"
 value: "Not necessary for
backup"
 backupInstanceDecorators:
 - key:
"app.example.com/hasHooks"
 metadataType: "label"
 value:
"true"
 preBackupHookConfiguration:
 container:
 key: "app.example.com/pre-backup-
container"

command:
 key: "app.example.com/pre-backup-
command"

onError:
 key: "app.example.com/pre-backup-on-
error"
 postBackupHookConfiguration:
 container:
 key: "app.example.com/post-backup-container"

command:
 key: "app.example.com/post-backup-command"

k8s.enterprisedb.io/addons:: '["external-backup-adapter"]'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 419

The external-backup-adapter-cluster add-on

The external-backup-adapter-cluster add-on must be configured in each Cluster resource you intend to use it through the
k8s.enterprisedb.io/externalBackupAdapterClusterConfig annotation - which accepts the YAML object as content - as outlined in the

following example:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
 annotations::
 "k8s.enterprisedb.io/addons":: '["external-backup-adapter-cluster"]'
 "k8s.enterprisedb.io/externalBackupAdapterClusterConfig": : |-
 electedResourcesDecorators:
 - key:
"app.example.com/elected"
 metadataType: "label"
 value:
"true"
 excludedResourcesSelector:
app=xyz,env=prod
 excludedResourcesDecorators:
 - key:
"app.example.com/excluded"
 metadataType: "label"
 value:
"true"
 - key: "app.example.com/excluded-
reason"
 metadataType: "annotation"
 value: "Not necessary for
backup"
 backupInstanceDecorators:
 - key:
"app.example.com/hasHooks"
 metadataType: "label"
 value:
"true"
 preBackupHookConfiguration:
 container:
 key: "app.example.com/pre-backup-
container"

command:
 key: "app.example.com/pre-backup-
command"

onError:
 key: "app.example.com/pre-backup-on-
error"
 postBackupHookConfiguration:
 container:
 key: "app.example.com/post-backup-container"

command:
 key: "app.example.com/post-backup-command"
spec::
 instances:: 3
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 420

About the fencing annotation

If the configured external backup adapter backs up annotations, the fencing annotation will be set by the pre-backup hook and persist to the restored
cluster. After restoring the cluster, you will need to manually remove the fencing annotation from the Cluster object to fix this.

This can be done with the cnp plugin for kubectl:

kubectl cnp fencing off <cluster-name>

Or, if you don't have the cnp plugin, you can remove the fencing annotation manually with the following command:

kubectl annotate cluster <cluster-name> k8s.enterprisedb.io/fencedInstances-

Please refer to the fencing documentation for more information.

Limitations

As far as the backup part is concerned, currently, the EDB Postgres for Kubernetes integration with external-backup-adapter and external-
backup-adapter-cluster supports cold backupscold backups only. These are also referred to as offline backupsoffline backups. This means that the selected replica is
temporarily fenced so that external-backup-adapter and external-backup-adapter-cluster can take a physical snapshot of the PVC
group - namely the PGDATA volume and, where available, the WAL volume.

In this short timeframe, the standby cannot accept read-only connections. If no standby is available - usually because we're in a single instance cluster -
and the annotation k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary is set to true, external-backup-adapter and
external-backup-adapter-cluster will temporarily fence the primary, causing downtime in terms of read-write operations. This use case is

normally left to development environments.

Full example of YAML file

Here is a full example of YAML content to be placed in either:

the EXTERNAL_BACKUP_ADDON_CONFIGURATION option as part of the the operator's configuration process described above for the
external-backup-adapter add-on, or

in the k8s.enterprisedb.io/externalBackupAdapterClusterConfig annotation for the external-backup-adapter-
cluster add-on

HintHint

Copy the content below and paste it inside the ConfigMap or Secret that you use to configure the operator or the annotation in the
Cluster , making sure you use the | character that YAML reserves for literals, as well as proper indentation. Use the comments to help you

customize the options for your tool.

An array of labels and/or annotations that will be
placed
on the elected PVC
group
electedResourcesDecorators::
 -- key:: "backup.example.com/elected"
 metadataType:: "label"
 value:: "true"

An array of labels and/or annotations that will be
placed
on every excluded pod and
PVC
excludedResourcesDecorators::

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 421

https://yaml.org/spec/1.2.2/#812-literal-style

 -- key:: "backup.example.com/excluded"
 metadataType:: "label"
 value:: "true"
 -- key:: "backup.example.com/excluded-reason"
 metadataType:: "annotation"
 value:: "Not necessary for
backup"

A LabelSelector containing the labels being used to filter
Pods
and PVCs to decorate with
excludedResourcesDecorators.
It accepts a label selector rule as
value.
See https://kubernetes.io/docs/concepts/overview/working-with-objects/labels/#label-
selectors
When empty, all the Pods and every PVC that is not elected will be
excluded.
excludedResourcesSelector::
app=xyz,env=prod

An array of labels and/or annotations that will be
placed
on the instance pod that's been selected for the backup
by
the operator and which contains the
hooks.
At least one element is
required
backupInstanceDecorators::
 -- key:: "backup.example.com/hasHooks"
 metadataType:: "label"
 value:: "true"

The pre-backup hook configuration allows you to control the
names
of the annotations in which the operator will place the
container
name, the command to run before taking the backup, and the
command
to run in case of error/abort on the third-party tool
side.
Such metadata will be applied on the instance that's been
selected
by the operator for the backup (see
`backupInstanceDecorators`)
preBackupHookConfiguration::
 # Where to place the information about the container that will
run
 # the pre-backup command. The container name is a fixed value
and
 # cannot be configured. Will be saved in the
annotations.
 # To decorate the pod with the hooks refer to:
instanceWithHookDecorators
 container::
 key:: "app.example.com/pre-backup-container"
 # Where to place the information about the command that will
be
 # executed before the backup is taken. The command is a fixed
value
 # and cannot be configured. Will be saved in the
annotations.
 # To decorate the pod with the hooks refer to:
instanceWithHookDecorators
 command::
 key:: "app.example.com/pre-backup-command"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 422

Kasten

Kasten is a very popular data protection tool for Kubernetes, enabling backup and restore, disaster recovery, and application mobility for Kubernetes
applications. For more information, see the Kasten website and the Kasten by Veeam Implementation Guide

In brief, to enable transparent integration with Kasten on an EDB Postgres for Kubernetes Cluster, you just need to add the kasten value to the
k8s.enterprisedb.io/addons annotation in a Cluster spec. For example:

 # Where to place the information about the command that will
be
 # executed in case of an error on the third-party tool
side.
 # The command is a fixed value and cannot be
configured.
 # Will be saved in the
annotations.
 # To decorate the pod with the hooks refer to:
instanceWithHookDecorators
 onError::
 key:: "app.example.com/pre-backup-on-error"

The post-backup hook configuration allows you to control the
names
of the annotations in which the operator will place the
container
name and the command to run after taking the
backup.
Such metadata will be applied on the instance that's been selected
by
the operator for the backup (see
`backupInstanceDecorators`).
postBackupHookConfiguration::
 # Where to place the information about the container that will
run
 # the post-backup command. The container name is a fixed value
and
 # cannot be configured. Will be saved in the
annotations.
 # To decorate the pod with hooks refer to:
instanceWithHookDecorators
 container::
 key:: "app.example.com/post-backup-container"
 # Where to place the information about the command that will
be
 # executed after the backup is taken. The command is a fixed
value
 # and cannot be configured. Will be saved in the
annotations.
 # To decorate the pod with hooks refer to:
instanceWithHookDecorators
 command::
 key:: "app.example.com/post-backup-command"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 423

https://www.kasten.io/
https://www.enterprisedb.com/docs/partner_docs/KastenbyVeeam/

Once the cluster is created and healthy, the operator will select the farthest ahead replica instance to be the designated backup and will add Kasten-
specific backup hooks through annotations and labels to that instance.

ImportantImportant

The operator will refuse to shut down a primary instance to take a cold backup unless the Cluster is annotated with
k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary: enabled

For further guidance on how to configure and use Kasten, see the Implementation Guide's Configuration and Using sections.

Limitations

As far as the backup part is concerned, currently, the EDB Postgres for Kubernetes integration with Kasten supports cold backupscold backups only. These are also
referred to as offline backupsoffline backups. This means that the selected replica is temporarily fenced so that external-backup-adapter can take a physical snapshot of
the PVC group - namely the PGDATA volume and, where available, the WAL volume.

In this short timeframe, the standby cannot accept read-only connections. If no standby is available - usually because we're in a single instance cluster -
and the annotation k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary is set to true, Kasten will temporarily fence the primary,
causing downtime in terms of read-write operations. This use case is normally left to development environments.

In terms of recovery, the integration with Kasten supports snapshot recovery only. No Point-in-Time Recovery (PITR) is available at the moment with the
Kasten add-on, and RPO is determined by the frequency of the snapshots in your Kasten environment. If your organization relies on Kasten, this usually is
acceptable, but if you need PITR we recommend you look at the native continuous backup method on object stores.

Velero

Velero is an open-source tool to safely back up, restore, perform disaster recovery, and migrate Kubernetes cluster resources and persistent volumes. For
more information, see the Velero documentation. To enable Velero compatibility with an EDB Postgres for Kubernetes Cluster, add the velero value to
the k8s.enterprisedb.io/addons annotation in a Cluster spec. For example:

 kind:: Cluster
 metadata::
 name:: one-instance
 annotations::
 k8s.enterprisedb.io/addons:: '["kasten"]'
 k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary:: enabled
 spec::
 instances:: 1
 storage::
 size::
1Gi
 walStorage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 424

https://www.enterprisedb.com/docs/partner_docs/KastenbyVeeam/04-ConfiguringVeeamKasten/
https://www.enterprisedb.com/docs/partner_docs/KastenbyVeeam/05-UsingVeeamKasten/
https://velero.io/docs/latest/

Once the cluster is created and healthy, the operator will select the farthest ahead replica instance to be the designated backup and will add Velero-
specific backup hooks as annotations to that instance.

These annotations are used by Velero to run the commands to prepare the Postgres instance to be backed up.

ImportantImportant

The operator will refuse to shut down a primary instance to take a cold backup unless the Cluster is annotated with
k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary: enabled

Limitations

As far as the backup part is concerned, currently, the EDB Postgres for Kubernetes integration with Velero supports cold backupscold backups only. These are also
referred to as offline backupsoffline backups. This means that the selected replica is temporarily fenced so that external-backup-adapter can take a physical snapshot of
the PVC group - namely the PGDATA volume and, where available, the WAL volume.

In this short timeframe, the standby cannot accept read-only connections. If no standby is available - usually because we're in a single instance cluster -
and the annotation k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary is set to true, Velero will temporarily fence the primary,
causing downtime in terms of read-write operations. This use case is normally left to development environments.

In terms of recovery, the integration with Velero supports snapshot recovery only, for now. No Point-in-Time Recovery (PITR) is available at the moment
with the Velero add-on, and RPO is determined by the frequency of the snapshots in your Velero environment. If your organization relies on Velero, this
usually is acceptable, but if you need PITR we recommend you look at the native continuous backup method on object stores.

Backup

By design, EDB Postgres for Kubernetes offloads as much of the backup functionality to Velero as possible, with the only requirement to make available the
previously mentioned backup hooks. Since EDB Postgres for Kubernetes transparently sets all the needed configurations, and the rest is standard Velero,
using Velero to backup a Postgres cluster is as straightforward as it would be for any other object. For example:

This command will create a standard Velero backup using the configured object storage and the configured Snapshot API.

 kind:: Cluster
 metadata::
 name:: one-instance
 annotations::
 k8s.enterprisedb.io/addons:: '["velero"]'
 k8s.enterprisedb.io/snapshotAllowColdBackupOnPrimary:: enabled
 spec::
 instances:: 1
 storage::
 size::
1Gi
 walStorage::
 size::
1Gi

velero backup create mybackup
\
 --include-namespaces mynamespace
\
 -n velero-install-namespace

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 425

https://velero.io/docs/latest/backup-hooks/

ImportantImportant

By default, the Velero add-on exclude only a few resources from the backup operation, namely pods and PVCs of the instances that have not been
selected (as you recall, the operator tries to backup the PVCs of the first replica). However, you can use the options for the velero backup
command to fine tune the resources you want to be part of your backup.

Restore

As with backup, the recovery process is a standard Velero procedure. The command to restore from a backup created with the above parameters would be:

velero create restore myrestore
\
 --from-backup mybackup
\
 -n velero-install-namespace

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 426

52 Operator capability levels

These capabilities were implemented by EDB Postgres for Kubernetes, classified using the Operator SDK definition of Capability Levels framework.

ImportantImportant

Based on the Operator Capability Levels model, you can expect a "Level V - Auto Pilot" set of capabilities from the EDB Postgres for Kubernetes
operator.

Each capability level is associated with a certain set of management features the operator offers:

1. Basic install
2. Seamless upgrades
3. Full lifecycle
4. Deep insights
5. Auto pilot

NoteNote

We consider this framework as a guide for future work and implementations in the operator.

Level 1: Basic install

Capability level 1 involves installing and configuring the operator. This category includes usability and user experience enhancements, such as
improvements in how you interact with the operator and a PostgreSQL cluster configuration.

ImportantImportant

We consider information security part of this level.

Operator deployment via declarative configuration

The operator is installed in a declarative way using a Kubernetes manifest that defines four major CustomResourceDefinition objects: Cluster ,
Pooler , Backup , and ScheduledBackup .

PostgreSQL cluster deployment via declarative configuration

You define a PostgreSQL cluster (operand) using the Cluster custom resource in a fully declarative way. The PostgreSQL version is determined by the
operand container image defined in the CR, which is automatically fetched from the requested registry. When deploying an operand, the operator also
creates the following resources: Pod , Service , Secret , ConfigMap , PersistentVolumeClaim , PodDisruptionBudget ,
ServiceAccount , RoleBinding , and Role .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 427

https://operatorframework.io/operator-capabilities/

Override of operand images through the CRD

The operator is designed to support any operand container image with PostgreSQL inside. By default, the operator uses the latest available minor version of
the latest stable major version supported by the PostgreSQL Community and published on quay.io by EDB. You can use any compatible image of
PostgreSQL supporting the primary/standby architecture directly by setting the imageName attribute in the CR. The operator also supports
imagePullSecrets to access private container registries, and it supports digests and tags for finer control of container image immutability. If you

prefer not to specify an image name, you can leverage image catalogs by simply referencing the PostgreSQL major version. Moreover, image catalogs
enable you to effortlessly create custom catalogs, directing to images based on your specific requirements.

Labels and annotations

You can configure the operator to support inheriting labels and annotations that are defined in a cluster's metadata. The goal is to improve the organization
of the EDB Postgres for Kubernetes deployment in your Kubernetes infrastructure.

Self-contained instance manager

Instead of relying on an external tool to coordinate PostgreSQL instances in the Kubernetes cluster pods, such as Patroni or Stolon, the operator injects the
operator executable inside each pod, in a file named /controller/manager . The application is used to control the underlying PostgreSQL instance
and to reconcile the pod status with the instance based on the PostgreSQL cluster topology. The instance manager also starts a web server that's invoked by
the kubelet for probes. Unix signals invoked by the kubelet are filtered by the instance manager. Where appropriate, they're forwarded to the
postgres process for fast and controlled reactions to external events. The instance manager is written in Go and has no external dependencies.

Storage configuration

Storage is a critical component in a database workload. Taking advantage of the Kubernetes native capabilities and resources in terms of storage, the
operator gives you enough flexibility to choose the right storage for your workload requirements, based on what the underlying Kubernetes environment
can offer. This implies choosing a particular storage class in a public cloud environment or fine-tuning the generated PVC through a PVC template in the
CR's storage parameter.

For better performance and finer control, you can also choose to host your cluster's write-ahead log (WAL, also known as pg_wal) on a separate volume,
preferably on different storage. The "Benchmarking" section of the documentation provides detailed instructions on benchmarking both storage and the
database before production. It relies on the cnp plugin to ensure optimal performance and reliability.

Replica configuration

The operator detects replicas in a cluster through a single parameter, called instances . If set to 1 , the cluster comprises a single primary PostgreSQL
instance with no replica. If higher than 1 , the operator manages instances -1 replicas, including high availability (HA) through automated failover
and rolling updates through switchover operations.

EDB Postgres for Kubernetes manages replication slots for all the replicas in the HA cluster. The implementation is inspired by the previously proposed
patch for PostgreSQL, called failover slots, and also supports user defined physical replication slots on the primary.

Service Configuration

By default, EDB Postgres for Kubernetes creates three Kubernetes services for applications to access the cluster via the network:

One pointing to the primary for read/write operations.
One pointing to replicas for read-only queries.
A generic one pointing to any instance for read operations.

You can disable the read-only and read services via configuration. Additionally, you can leverage the service template capability to create custom service
resources, including load balancers, to access PostgreSQL outside Kubernetes. This is particularly useful for DBaaS purposes.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 428

https://wiki.postgresql.org/wiki/Failover_slots

Database configuration

The operator is designed to bootstrap a PostgreSQL cluster with a single database. The operator transparently manages network access to the cluster
through three Kubernetes services provisioned and managed for read-write, read, and read-only workloads. Using the convention-over-configuration
approach, the operator creates a database called app , by default owned by a regular Postgres user with the same name. You can specify both the
database name and the user name, if required, as part of the bootstrap.

Additional databases can be created or managed via declarative database management using the Database CRD, also supporting extensions and
schemas.

Although no configuration is required to run the cluster, you can customize both PostgreSQL runtime configuration and PostgreSQL host-based
authentication rules in the postgresql section of the CR.

Configuration of Postgres roles, users, and groups

EDB Postgres for Kubernetes supports management of PostgreSQL roles, users, and groups through declarative configuration using the
.spec.managed.roles stanza.

Pod security standards

For InfoSec requirements, the operator doesn't require privileged mode for any container. It enforces a read-only root filesystem to guarantee containers
immutability for both the operator and the operand pods. It also explicitly sets the required security contexts.

On Red Hat OpenShift, Cloud Native PostgreSQL runs in restricted security context constraint (SCC), the most restrictive one - with the goal to limit
the execution of a pod to a namespace allocated UID and SELinux context.

Affinity

The cluster's affinity section enables fine-tuning of how pods and related resources, such as persistent volumes, are scheduled across the nodes of a
Kubernetes cluster. In particular, the operator supports:

Pod affinity and anti-affinity
Node selector
Taints and tolerations

Topology spread constraints

The cluster's topologySpreadConstraints section enables additional control of scheduling pods across topologies, enhancing what affinity and
anti-affinity can offer.

License keys

The operator comes with support for license keys, with the possibility to programmatically define a default behavior in case of the absence of a key. Cloud
Native PostgreSQL has been programmed to create an implicit 30-day trial license for every deployed cluster. License keys are signed strings that the
operator can verify using an asymmetric key technique. The content is a JSON object that includes the type, the product, the expiration date, and, if
required, the cluster identifiers (namespace and name), the number of instances, the credentials to be used as a secret by the operator to pull down an
image from a protected container registry. Beyond the expiration date, the operator will stop any reconciliation process until the license key is restored.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 429

https://www.openshift.com/blog/managing-sccs-in-openshift

Command line interface

EDB Postgres for Kubernetes doesn't have its own command-line interface. It relies on the best command-line interface for Kubernetes, kubectl, by
providing a plugin called cnp . This plugin enhances and simplifies your PostgreSQL cluster management experience.

Current status of the cluster

The operator continuously updates the status section of the CR with the observed status of the cluster. The entire PostgreSQL cluster status is continuously
monitored by the instance manager running in each pod. The instance manager is responsible for applying the required changes to the controlled
PostgreSQL instance to converge to the required status of the cluster. (For example, if the cluster status reports that pod -1 is the primary, pod -1 needs
to promote itself while the other pods need to follow pod -1 .) The same status is used by the cnp plugin for kubectl to provide details.

Operator's certification authority

The operator creates a certification authority for itself. It creates and signs with the operator certification authority a leaf certificate for the webhook server
to use. This certificate ensures safe communication between the Kubernetes API server and the operator.

Cluster's certification authority

The operator creates a certification authority for every PostgreSQL cluster. This certification authority is used to issue and renew TLS certificates for
clients' authentication, including streaming replication standby servers (instead of passwords). Support for a custom certification authority for client
certificates is available through secrets, which also includes integration with cert-manager. Certificates can be issued with the cnp plugin for kubectl.

TLS connections

The operator transparently and natively supports TLS/SSL connections to encrypt client/server communications for increased security using the cluster's
certification authority. Support for custom server certificates is available through secrets, which also includes integration with cert-manager.

Certificate authentication for streaming replication

To authorize streaming replication connections from the standby servers, the operator relies on TLS client certificate authentication. This method is used
instead of relying on a password (and therefore a secret).

Continuous configuration management

The operator enables you to apply changes to the Cluster resource YAML section of the PostgreSQL configuration. Depending on the configuration
option, it also makes sure that all instances are properly reloaded or restarted.

Current limitationCurrent limitation

Changes with ALTER SYSTEM aren't detected, meaning that the cluster state isn't enforced.

Import of existing PostgreSQL databases

The operator provides a declarative way to import existing Postgres databases in a new EDB Postgres for Kubernetes cluster in Kubernetes, using offline
migrations. The same feature also covers offline major upgrades of PostgreSQL databases. Offline means that applications must stop their write operations
at the source until the database is imported. The feature extends the initdb bootstrap method to create a new PostgreSQL cluster using a logical
snapshot of the data available in another PostgreSQL database. This data can be accessed by way of the network through a superuser connection. Import is
from any supported version of Postgres. It relies on pg_dump and pg_restore being executed from the new cluster primary for all databases that are
part of the operation and, if requested, for roles.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 430

PostGIS clusters

EDB Postgres for Kubernetes supports the installation of clusters with the PostGIS open source extension for geographical databases. This extension is one
of the most popular extensions for PostgreSQL.

Basic LDAP authentication for PostgreSQL

The operator allows you to configure LDAP authentication for your PostgreSQL clients, using either the simple bind or search+bind mode, as described in
the LDAP authentication section of the PostgreSQL documentation.

Multiple installation methods

The operator can be installed through a Kubernetes manifest by way of kubectl apply , to be used in a traditional Kubernetes installation in public and
private cloud environments. Additionally, it can be deployed through the OpenShift Container Platform by Red Hat. A Helm Chart for the operator is also
available.

Convention over configuration

The operator supports the convention-over-configuration paradigm, deciding standard default values while allowing you to override them and customize
them. You can specify a deployment of a PostgreSQL cluster using the Cluster CRD in a couple of lines of YAML code.

Level 2: Seamless upgrades

Capability level 2 is about enabling updates of the operator and the actual workload, in this case PostgreSQL servers. This includes PostgreSQL minor
release updates (security and bug fixes normally) as well as major online upgrades.

Operator Upgrade

Upgrading the operator is seamless and can be done as a new deployment. After upgrading the controller, a rolling update of all deployed PostgreSQL
clusters is initiated. You can choose to update all clusters simultaneously or distribute their upgrades over time.

Thanks to the instance manager's injection, upgrading the operator does not require changes to the operand, allowing the operator to manage older
versions of it.

Additionally, EDB Postgres for Kubernetes supports in-place updates of the instance manager following an operator upgrade. In-place updates do not
require a rolling update or a subsequent switchover of the cluster.

Upgrade of the managed workload

The operand can be upgraded using a declarative configuration approach as part of changing the CR and, in particular, the imageName parameter. This is
normally initiated by security updates or Postgres minor version updates. In the presence of standby servers, the operator performs rolling updates starting
from the replicas. It does this by dropping the existing pod and creating a new one with the new requested operand image that reuses the underlying
storage. Depending on the value of the primaryUpdateStrategy , the operator proceeds with a switchover before updating the former primary
(unsupervised). Or, it waits for the user to manually issue the switchover procedure (supervised) by way of the cnp plugin for kubectl. The
setting to use depends on the business requirements, as the operation might generate some downtime for the applications. This downtime can range from
a few seconds to minutes, based on the actual database workload.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 431

https://www.postgresql.org/docs/current/auth-ldap.html

Offline In-Place Major Upgrades of PostgreSQL

EDB Postgres for Kubernetes supports declarative offline in-place major upgrades when a new operand container image with a higher PostgreSQL major
version is applied to a cluster. The upgrade can be triggered by updating the image tag via the .spec.imageName option or by using an image catalog to
manage version changes. During the upgrade, all cluster pods are shut down to ensure data consistency. A new job is then created to validate the upgrade
conditions, execute pg_upgrade , and create new directories for PGDATA , WAL files, and tablespaces if needed. Once the upgrade is complete, replicas
are re-created. Failed upgrades can be rolled back.

Display cluster availability status during upgrade

At any time, convey the cluster's high availability status, for example, Setting up primary , Creating a new replica , Cluster in
healthy state , Switchover in progress , Failing over , Upgrading cluster , and Upgrading Postgres major version .

Level 3: Full lifecycle

Capability level 3 requires the operator to manage aspects of business continuity and scalability.

Disaster recovery is a business continuity component that requires that both backup and recovery of a database work correctly. While as a starting point,
the goal is to achieve RPO < 5 minutes, the long-term goal is to implement RPO=0 backup solutions. High availability is the other important component of
business continuity. Through PostgreSQL native physical replication and hot standby replicas, it allows the operator to perform failover and switchover
operations. This area includes enhancements in:

Control of PostgreSQL physical replication, such as synchronous replication, (cascading) replication clusters, and so on
Connection pooling, to improve performance and control through a connection pooling layer with pgBouncer

PostgreSQL WAL archive

The operator supports PostgreSQL continuous archiving of WAL files to an object store (AWS S3 and S3-compatible, Azure Blob Storage, Google Cloud
Storage, and gateways like MinIO).

WAL archiving is defined at the cluster level, declaratively, through the backup parameter in the cluster definition. This is done by specifying an S3
protocol destination URL (for example, to point to a specific folder in an AWS S3 bucket) and, optionally, a generic endpoint URL.

WAL archiving, a prerequisite for continuous backup, doesn't require any further user action. The operator transparently sets the archive_command to
rely on barman-cloud-wal-archive to ship WAL files to the defined endpoint. You can decide the compression algorithm, as well as the number of
parallel jobs to concurrently upload WAL files in the archive. In addition, Instance Manager checks the correctness of the archive destination by
performing the barman-cloud-check-wal-archive command before beginning to ship the first set of WAL files.

PostgreSQL Backups

EDB Postgres for Kubernetes provides a pluggable interface (CNP-I) for managing application-level backups using PostgreSQL’s native physical backup
mechanisms—namely base backups and continuous WAL archiving. This design enables flexibility and extensibility while ensuring consistency and
performance.

The EDB Postgres for Kubernetes Community officially supports the Barman Cloud Plugin, which enables continuous physical backups to object stores,
along with full and Point-In-Time Recovery (PITR) capabilities.

In addition to CNP-I plugins, EDB Postgres for Kubernetes also natively supports backups using Kubernetes volume snapshots, when supported by the
underlying storage class and CSI driver.

You can initiate base backups in two ways:

On-demand, using the Backup custom resource
Scheduled, using the ScheduledBackup custom resource, with a cron-like schedule format

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 432

https://cloudnative-pg.io/plugin-barman-cloud/

Volume snapshots leverage the Kubernetes API and are particularly effective for very large databases (VLDBs) due to their speed and storage efficiency.

Both volume snapshots and CNP-I-based backups support:

Hot backups: Taken while PostgreSQL is running, ensuring minimal disruption.
Cold backups: Performed by temporarily stopping PostgreSQL to ensure a fully consistent snapshot, when required.

Backups from a standby

The operator supports offloading base backups onto a standby without impacting the RPO of the database. This allows resources to be preserved on the
primary, in particular I/O, for standard database operations.

Full restore from a backup

The operator enables you to bootstrap a new cluster (with its settings) starting from an existing and accessible backup, either on a volume snapshot, or in
an object store, or via a plugin.

Once the bootstrap process is completed, the operator initiates the instance in recovery mode. It replays all available WAL files from the specified archive,
exiting recovery and starting as a primary. Subsequently, the operator clones the requested number of standby instances from the primary. EDB Postgres
for Kubernetes supports parallel WAL fetching from the archive.

Point-in-time recovery (PITR) from a backup

The operator enables you to create a new PostgreSQL cluster by recovering an existing backup to a specific point in time, defined with a timestamp, a label,
or a transaction ID. This capability is built on top of the full restore one and supports all the options available in PostgreSQL for PITR.

Zero-Data-Loss Clusters Through Synchronous Replication

Achieve zero data loss (RPO=0) in your local high-availability EDB Postgres for Kubernetes cluster with support for both quorum-based and priority-based
synchronous replication. The operator offers a flexible way to define the number of expected synchronous standby replicas available at any time, and
allows customization of the synchronous_standby_names option as needed.

Replica clusters

Establish a robust cross-Kubernetes cluster topology for PostgreSQL clusters, harnessing the power of native streaming and cascading replication. With the
replica option, you can configure an autonomous cluster to consistently replicate data from another PostgreSQL source of the same major version. This

source can be located anywhere, provided you have access to a WAL archive for fetching WAL files or a direct streaming connection via TLS between the
two endpoints.

Notably, the source PostgreSQL instance can exist outside the Kubernetes environment, whether in a physical or virtual setting.

Replica clusters can be instantiated through various methods, including volume snapshots, a recovery object store (using the Barman Cloud backup
format), or streaming using pg_basebackup . Both WAL file shipping and WAL streaming are supported. The deployment of replica clusters significantly
elevates the business continuity posture of PostgreSQL databases within Kubernetes, extending across multiple data centers and facilitating hybrid and
multi-cloud setups. (While anticipating Kubernetes federation native capabilities, manual switchover across data centers remains necessary.)

Additionally, the flexibility extends to creating delayed replica clusters intentionally lagging behind the primary cluster. This intentional lag aims to
minimize the Recovery Time Objective (RTO) in the event of unintended errors, such as incorrect DELETE or UPDATE SQL operations.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 433

https://www.postgresql.org/docs/current/runtime-config-wal.html#RUNTIME-CONFIG-WAL-RECOVERY-TARGET

Distributed Database Topologies

Leverage replica clusters to define distributed database topologies for PostgreSQL that span across various Kubernetes clusters, facilitating hybrid and
multi-cloud deployments. With EDB Postgres for Kubernetes, you gain powerful capabilities, including:

Declarative Primary ControlDeclarative Primary Control: Easily specify which PostgreSQL cluster acts as the primary.
Seamless Primary SwitchoverSeamless Primary Switchover: Effortlessly demote the current primary and promote another PostgreSQL cluster, typically located in a different
region, without needing to re-clone the former primary.

This setup can efficiently operate across two or more regions, can rely entirely on object stores for replication, and guarantees a maximum RPO (Recovery
Point Objective) of 5 minutes. This advanced feature is uniquely provided by EDB Postgres for Kubernetes, ensuring robust data integrity and continuity
across diverse environments.

Tablespace support

EDB Postgres for Kubernetes seamlessly integrates robust support for PostgreSQL tablespaces by facilitating the declarative definition of individual
persistent volumes. This innovative feature empowers you to efficiently distribute I/O operations across a diverse array of storage devices. Through the
transparent orchestration of tablespaces, EDB Postgres for Kubernetes enhances the performance and scalability of PostgreSQL databases, ensuring a
streamlined and optimized experience for managing large scale data storage in cloud-native environments. Support for temporary tablespaces is also
included.

Customizable Startup, Liveness, and Readiness Probes

EDB Postgres for Kubernetes configures startup, liveness, and readiness probes for PostgreSQL containers, which are managed by the Kubernetes kubelet.
These probes interact with the /startupz , /healthz , and /readyz endpoints exposed by the instance manager's web server to monitor the Pod's
health and readiness.

All probes are configured with default settings but can be fully customized to meet specific needs, allowing for fine-tuning to align with your environment
and workloads.

For detailed configuration options and advanced usage, refer to the Postgres instance manager documentation.

Rolling deployments

The operator supports rolling deployments to minimize the downtime. If a PostgreSQL cluster is exposed publicly, the service load-balances the read-only
traffic only to available pods during the initialization or the update.

Scale up and down of replicas

The operator allows you to scale up and down the number of instances in a PostgreSQL cluster. New replicas are started up from the primary server and
participate in the cluster's HA infrastructure. The CRD declares a "scale" subresource that allows you to use the kubectl scale command.

Maintenance window and PodDisruptionBudget for Kubernetes nodes

The operator creates a PodDisruptionBudget resource to limit the number of concurrent disruptions to one primary instance. This configuration
prevents the maintenance operation from deleting all the pods in a cluster, allowing the specified number of instances to be created. The
PodDisruptionBudget is applied during the node-draining operation, preventing any disruption of the cluster service.

While this strategy is correct for Kubernetes clusters where storage is shared among all the worker nodes, it might not be the best solution for clusters
using local storage or for clusters installed in a private cloud. The operator allows you to specify a maintenance window and configure the reaction to any
underlying node eviction. The ReusePVC option in the maintenance window section enables to specify the strategy to use. Allocate new storage in a
different PVC for the evicted instance, or wait for the underlying node to be available again.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 434

Fencing

Fencing is the process of protecting the data in one, more, or even all instances of a PostgreSQL cluster when they appear to be malfunctioning. When an
instance is fenced, the PostgreSQL server process is guaranteed to be shut down, while the pod is kept running. This ensures that, until the fence is lifted,
data on the pod isn't modified by PostgreSQL and that you can investigate file system for debugging and troubleshooting purposes.

Hibernation

EDB Postgres for Kubernetes supports hibernation of a running PostgreSQL cluster in a declarative manner, through the
k8s.enterprisedb.io/hibernation annotation. Hibernation enables saving CPU power by removing the database pods while keeping the

database PVCs. This feature simulates scaling to 0 instances.

Reuse of persistent volumes storage in pods

When the operator needs to create a pod that was deleted by the user or was evicted by a Kubernetes maintenance operation, it reuses the
PersistentVolumeClaim , if available. This ability avoids the need to clone the data from the primary again.

CPU and memory requests and limits

The operator allows administrators to control and manage resource usage by the cluster's pods in the resources section of the manifest. In particular,
you can set requests and limits values for both CPU and RAM.

Connection pooling with PgBouncer

EDB Postgres for Kubernetes provides native support for connection pooling with PgBouncer, one of the most popular open source connection poolers for
PostgreSQL. From an architectural point of view, the native implementation of a PgBouncer connection pooler introduces a new layer to access the
database. This optimizes the query flow toward the instances and makes the use of the underlying PostgreSQL resources more efficient. Instead of
connecting directly to a PostgreSQL service, applications can now connect to the PgBouncer service and start reusing any existing connection.

Logical Replication

EDB Postgres for Kubernetes supports PostgreSQL's logical replication in a declarative manner using Publication and Subscription custom
resource definitions.

Logical replication is particularly useful together with the import facility for online data migrations (even from public DBaaS solutions) and major
PostgreSQL upgrades.

Integration with external backup tools for Kubernetes

EDB Postgres for Kubernetes provides add-ons to integrate with:

Kasten, a very popular data protection tool for Kubernetes, enabling backup and restore, disaster recovery, and application mobility for cloud native
applications
Velero, a very popular open source tool to back up and restore Kubernetes resources and persistent volumes and OpenShift API for Data Protection
(OADP)

Moreover, the external backup adapter add-on provides a generic interface to integrate EDB Postgres for Kubernetes in any third-party tool for backups.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 435

https://kasten.io/
https://velero.io/
https://github.com/openshift/oadp-operator

Level 4: Deep insights

Capability level 4 is about observability: monitoring, alerting, trending, and log processing. This might involve the use of external tools, such as
Prometheus, Grafana, and Fluent Bit, as well as extensions in the PostgreSQL engine for the output of error logs directly in JSON format.

EDB Postgres for Kubernetes was designed to provide everything needed to easily integrate with industry-standard and community-accepted tools for
flexible monitoring and logging.

Prometheus exporter with configurable queries

The instance manager provides a pluggable framework. By way of its own web server listening on the metrics port (9187), it exposes an endpoint to
export metrics for the Prometheus monitoring and alerting tool. The operator supports custom monitoring queries defined as ConfigMap or Secret
objects using a syntax that's compatible with postgres_exporter for Prometheus. EDB Postgres for Kubernetes provides a set of basic monitoring
queries for PostgreSQL that can be integrated and adapted to your context.

Grafana dashboard

EDB Postgres for Kubernetes comes with a Grafana dashboard that you can use as a base to monitor all critical aspects of a PostgreSQL cluster, and
customize.

Standard output logging of PostgreSQL error messages in JSON format

Every log message is delivered to standard output in JSON format. The first level is the definition of the timestamp, the log level, and the type of log entry,
such as postgres for the canonical PostgreSQL error message channel. As a result, every pod managed by EDB Postgres for Kubernetes can be easily
and directly integrated with any downstream log processing stack that supports JSON as source data type.

Real-time query monitoring

EDB Postgres for Kubernetes transparently and natively supports:

The essential pg_stat_statements extension, which enables tracking of planning and execution statistics of all SQL statements executed by a
PostgreSQL server
The auto_explain extension, which provides a means for logging execution plans of slow statements automatically, without having to manually
run EXPLAIN (helpful for tracking down un-optimized queries)
The pg_failover_slots extension, which makes logical replication slots usable across a physical failover, ensuring resilience in change data
capture (CDC) contexts based on PostgreSQL's native logical replication

Audit

EDB Postgres for Kubernetes allows database and security administrators, auditors, and operators to track and analyze database activities using PGAudit
for PostgreSQL and the EDB Audit Logging functionality (for EDB Postgres Advanced). Such activities flow directly in the JSON log and can be properly
routed to the correct downstream target using common log brokers like Fluentd.

Kubernetes events

Record major events as expected by the Kubernetes API, such as creating resources, removing nodes, and upgrading. Events can be displayed by using the
kubectl describe and kubectl get events commands.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 436

https://prometheus.io/
https://github.com/prometheus-community/postgres_exporter
https://www.postgresql.org/docs/current/pgstatstatements.html
https://www.postgresql.org/docs/current/auto-explain.html
https://github.com/EnterpriseDB/pg_failover_slots

Level 5: Auto pilot

Capability level 5 is focused on automated scaling, healing, and tuning through the discovery of anomalies and insights that emerged from the
observability layer.

Automated failover for self-healing

In case of detected failure on the primary, the operator changes the status of the cluster by setting the most aligned replica as the new target primary. As a
consequence, the instance manager in each alive pod initiates the required procedures to align itself with the requested status of the cluster. It does this by
either becoming the new primary or by following it. In case the former primary comes back up, the same mechanism avoids a split-brain by preventing
applications from reaching it, running pg_rewind on the server and restarting it as a standby.

Automated recreation of a standby

If the pod hosting a standby is removed, the operator initiates the procedure to re-create a standby server.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 437

53 Frequently Asked Questions (FAQ)

Running PostgreSQL in Kubernetes

Everyone knows that stateful workloads like PostgreSQL cannot run in Kubernetes. Why do you say the contrary?Everyone knows that stateful workloads like PostgreSQL cannot run in Kubernetes. Why do you say the contrary?

An independent research survey commissioned by the Data on Kubernetes Community in September 2021 revealed that half of the respondents run most of
their production workloads on Kubernetes. 90% of them believe that Kubernetes is ready for stateful workloads, and 70% of them run databases in
production. Databases like Postgres. However, according to them, significant challenges remain, such as the knowledge gap (Kubernetes and Cloud Native,
in general, have a steep learning curve) and the quality of Kubernetes operators. The latter is the reason why we believe that an operator like EDB Postgres
for Kubernetes highly contributes to the success of your project.

For database fanatics like us, a real game-changer has been the introduction of the support for local persistent volumes in Kubernetes 1.14 in April 2019.

EDB Postgres for Kubernetes is built on immutable application containers. What does it mean?EDB Postgres for Kubernetes is built on immutable application containers. What does it mean?

According to the microservice architectural pattern, a container is designed to run a single application or process. As a result, such container images are
built to run the main application as the single entry point (the so-called PID 1 process).

In Kubernetes terms, the application is referred to as workload. Workloads can be stateless like a web application server or stateful like a database.
Mapping this concept to PostgreSQL, an immutable application container is a single "postgres" process that is running and tied to a single and specific
version - the one in the immutable container image.

No other processes such as SSH or systemd, or syslog are allowed.

Immutable Application Containers are in contrast with Mutable System Containers, which are still a very common way to interpret and use containers.

Immutable means that a container won't be modified during its life: no updates, no patches, no configuration changes. If you must update the application
code or apply a patch, you build a new image and redeploy it. Immutability makes deployments safer and more repeatable.

For more information, please refer to "Why EDB chose immutable application containers".

What does Cloud Native mean?What does Cloud Native mean?

The Cloud Native Computing Foundation defines the term "Cloud Native". However, since the start of the Cloud Native PostgreSQL/EDB Postgres for
Kubernetes operator at 2ndQuadrant, the development team has been interpreting Cloud Native as three main concepts:

1. An existing, healthy, genuine, and prosperous DevOps culture, founded on people, as well as principles and processes, which enables teams and
organizations (as teams of teams) to continuously change so to innovate and accelerate the delivery of outcomes and produce value for the business
in safer, more efficient, and more engaging ways

2. A microservice architecture that is based on Immutable Application Containers
3. A way to manage and orchestrate these containers, such as Kubernetes

Currently, the standard de facto for container orchestration is Kubernetes, which automates the deployment, administration and scalability of Cloud Native
Applications.

Another definition of Cloud Native that resonates with us is the one defined by Ibryam and Huß in "Kubernetes Patterns", published by O'Reilly:

Principles, Patterns, Tools to automate containerized microservices at scale

Can I run EDB Postgres for Kubernetes on bare metal Kubernetes?Can I run EDB Postgres for Kubernetes on bare metal Kubernetes?

Yes, definitely. You can run Kubernetes on bare metal. And you can dedicate one or more physical worker nodes with locally attached storage to PostgreSQL
workloads for maximum and predictable I/O performance.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 438

https://dok.community/dokc-2021-report/
https://kubernetes.io/blog/2019/04/04/kubernetes-1.14-local-persistent-volumes-ga/
https://www.enterprisedb.com/blog/why-edb-chose-immutable-application-containers
https://github.com/cncf/toc/blob/main/DEFINITION.md
https://www.oreilly.com/library/view/kubernetes-patterns/9781492050278/

The actual Cloud Native PostgreSQL project, from which EDB Postgres for Kubernetes originated, was born after a pilot project in 2019 that benchmarked
storage and PostgreSQL on the same bare metal server, first directly in Linux, and then inside Kubernetes. As expected, the experiment showed only
negligible performance impact introduced by the container running in Kubernetes through local persistent volumes, allowing the Cloud Native initiative to
continue.

Why should I use PostgreSQL replication instead of file system replication?Why should I use PostgreSQL replication instead of file system replication?

Please read the "Architecture: Synchronizing the state" section.

Why should I use an operator instead of running PostgreSQL as a container?Why should I use an operator instead of running PostgreSQL as a container?

The most basic approach to running PostgreSQL in Kubernetes is to have a pod, which is the smallest unit of deployment in Kubernetes, running a Postgres
container with no replica. The volume hosting the Postgres data directory is mounted on the pod, and it usually resides on network storage. In this case,
Kubernetes restarts the pod in case of a problem or moves it to another Kubernetes node.

The most sophisticated approach is to run PostgreSQL using an operator. An operator is an extension of the Kubernetes controller and defines how a
complex application works in business continuity contexts. The operator pattern is currently state of the art in Kubernetes for this purpose. An operator
simulates the work of a human operator in an automated and programmatic way.

Postgres is a complex application, and an operator not only needs to deploy a cluster (the first step), but also properly react after unexpected events. The
typical example is that of a failover.

An operator relies on Kubernetes for capabilities like self-healing, scalability, replication, high availability, backup, recovery, updates, access, resource
control, storage management, and so on. It also facilitates the integration of a PostgreSQL cluster in the log management and monitoring infrastructure.

EDB Postgres for Kubernetes enables the definition of the desired state of a PostgreSQL cluster via declarative configuration. Kubernetes continuously
makes sure that the current state of the infrastructure matches the desired one through reconciliation loops initiated by the Kubernetes controller. If the
desired state and the actual state don't match, reconciliation loops trigger self-healing procedures. That's where an operator like EDB Postgres for
Kubernetes comes into play.

Are there any other operators for Postgres out there?Are there any other operators for Postgres out there?

Yes, of course. And our advice is that you look at all of them and compare them with EDB Postgres for Kubernetes before making your decision. You will see
that most of these operators use an external failover management tool (Patroni or similar) and rely on StatefulSets.

Here is a non exhaustive list, in chronological order from their publication on GitHub:

Crunchy Data Postgres Operator (2017)
Zalando Postgres Operator (2017)
Stackgres (2020)
Percona Operator for PostgreSQL (2021)
Kubegres (2021)

Feel free to report any relevant missing entry as a PR.

InfoInfo

The Data on Kubernetes Community (which includes some of our maintainers) is working on an independent and vendor neutral project to list
the operators called Operator Feature Matrix.

You say that EDB Postgres for Kubernetes is a fully declarative operator. What do you mean by that?You say that EDB Postgres for Kubernetes is a fully declarative operator. What do you mean by that?

The easiest way is to explain declarative configuration through an example that highlights the differences with imperative configuration. In an imperative
context, the state is defined as a series of tasks to be executed in sequence. So, we can get a three-node PostgreSQL cluster by creating the first instance,
configuring the replication, cloning a second instance, and the third one.

In a declarative approach, the state of a system is defined using configuration, namely: there's a PostgreSQL 13 cluster with two replicas. This approach
highly simplifies change management operations, and when these are stored in source control systems like Git, it enables the Infrastructure as Code
capability. And Kubernetes takes it farther than deployment, as it makes sure that our request is fulfilled at any time.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 439

https://github.com/CrunchyData/postgres-operator
https://github.com/zalando/postgres-operator
https://github.com/ongres/stackgres
https://github.com/percona/percona-postgresql-operator
https://github.com/reactive-tech/kubegres
https://dok.community/
https://github.com/dokc/operator-feature-matrix

What are the required skills to run PostgreSQL on Kubernetes?What are the required skills to run PostgreSQL on Kubernetes?

Running PostgreSQL on Kubernetes requires both PostgreSQL and Kubernetes skills in your DevOps team. The best experience is when database
administrators familiarize themselves with Kubernetes core concepts and are able to interact with Kubernetes administrators.

Our advice is for everyone that wants to fully exploit Cloud Native PostgreSQL to acquire the "Certified Kubernetes Administrator (CKA)" status from the
CNCF certification program.

Why isn't EDB Postgres for Kubernetes using StatefulSets?Why isn't EDB Postgres for Kubernetes using StatefulSets?

EDB Postgres for Kubernetes does not rely on StatefulSet resources, and instead manages the underlying PVCs directly by leveraging the selected
storage class for dynamic provisioning. Please refer to the "Custom Pod Controller" section for details and reasons behind this decision.

High availability

What happens to the PostgreSQL clusters when the operator pod dies or it is not available for a certain amount of time?What happens to the PostgreSQL clusters when the operator pod dies or it is not available for a certain amount of time?

The EDB Postgres for Kubernetes operator, among other things, is responsible for self-healing capabilities. As such, they might not be available during an
outage of the operator.

However, assuming that the outage does not affect the nodes where PostgreSQL clusters are running, the database will continue to serve normal
operations, through the relevant Kubernetes services. Moreover, the instance manager, which runs inside each PostgreSQL pod will still work, making sure
that the database server is up, including accessory services like logging, export of metrics, continuous archiving of WAL files, etc.

To summarize:

an outage of the operator does not necessarily imply a PostgreSQL database outage; it's like running a database without a DBA or system administrator.

What are the reasons behind EDB Postgres for Kubernetes not relying on a failover management tool like Patroni, repmgr, or Stolon?What are the reasons behind EDB Postgres for Kubernetes not relying on a failover management tool like Patroni, repmgr, or Stolon?

Although part of the team that develops EDB Postgres for Kubernetes has been heavily involved in repmgr in the past, we decided to take a different
approach and directly extend the Kubernetes controller and rely on the Kubernetes API server to hold the status of a Postgres cluster, and use it as the only
source of truth to:

control High Availability of a Postgres cluster primarily via automated failover and switchover, coordinating itself with the instance manager
control the Kubernetes services, that is the entry points for your applications

Should I manually resync a former primary with the new one following a failover?Should I manually resync a former primary with the new one following a failover?

No. The operator does that automatically for you, and relies on pg_rewind to synchronize the former primary with the new one.

Database management

Why should I use PostgreSQL?Why should I use PostgreSQL?

We believe that PostgreSQL is the equivalent in the database area of what Linux represents in the operating system space. The current latest major version
of Postgres is version 16, which ships out of the box:

native streaming replication, both physical and logical
continuous hot backup and point in time recovery
declarative partitioning for horizontal table partitioning, which is a very well-known technique in the database area to improve vertical scalability on
a single instance
extensibility, with extensions like PostGIS for geographical databases
parallel queries for vertical scalability
JSON support, unleashing the multi-model hybrid database for both structured and unstructured data queried via standard SQL

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 440

And so on ...

How many databases should be hosted in a single PostgreSQL instance?How many databases should be hosted in a single PostgreSQL instance?

Our recommendation is to dedicate a single PostgreSQL cluster (intended as primary and multiple standby servers) to a single database, entirely managed
by a single microservice application. However, by leveraging the "postgres" superuser, it is possible to create as many users and databases as desired
(subject to the available resources).

The reason for this recommendation lies in the Cloud Native concept, based on microservices. In a pure microservice architecture, the microservice itself
should own the data it manages exclusively. These could be flat files, queues, key-value stores, or, in our case, a PostgreSQL relational database containing
both structured and unstructured data. The general idea is that only the microservice can access the database, including schema management and
migrations.

EDB Postgres for Kubernetes has been designed to work this way out of the box, by default creating an application user and an application database owned
by the aforementioned application user.

Reserving a PostgreSQL instance to a single microservice owned database, enhances:

resource management: in PostgreSQL, CPU, and memory constrained resources are generally handled at the instance level, not the database level,
making it easier to integrate it with Kubernetes resource management policies at the pod level
physical continuous backup and Point-In-Time-Recovery (PITR): given that PostgreSQL handles continuous backup and recovery at the instance
level, having one database per instance simplifies PITR operations, differentiates retention policy management, and increases data protection of
backups
application updates: enable each application to decide their update policies without impacting other databases owned by different applications
database updates: each application can decide which PostgreSQL version to use, and independently, when to upgrade to a different major version of
PostgreSQL and at what conditions (e.g., cutover time)

Is there an upper limit in database size for not considering Kubernetes?Is there an upper limit in database size for not considering Kubernetes?

No, as Kubernetes is no different from virtual machines and bare metal as far as this is regarded. Practically, however, it depends on the available
resources of your Kubernetes cluster. Our advice with very large databases (VLDB) is to consider a shared nothing architecture, where a Kubernetes worker
node is dedicated to a single Postgres instance, with dedicated storage. We proved that this extreme architectural pattern works when we benchmarked
running PostgreSQL on bare metal Kubernetes with local persistent volumes. Tablespaces and horizontal partitioning are data modeling techniques that
you can use to improve the vertical scalability of you databases.

How can I specify a time zone in the PostgreSQL cluster?How can I specify a time zone in the PostgreSQL cluster?

PostgreSQL has an extensive support for time zones, as explained in the official documentation:

Date time data types
Client connections config options

Although time zones can even be used at session, transaction and even as part of a query in PostgreSQL, a very common way is to set them up globally. With
EDB Postgres for Kubernetes you can configure the cluster level time zone in the .spec.postgresql.parameters section as in the following
example:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 441

https://www.2ndquadrant.com/en/blog/local-persistent-volumes-and-postgresql-usage-in-kubernetes/
https://www.postgresql.org/docs/current/datatype-datetime.html
https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TIMEZONE

The time zone can be verified with:

$ kubectl exec -ti pg-italy-1 -c postgres -- psql -x -c "SHOW timezone"
-[RECORD 1]---------
TimeZone | Europe/Rome

What is the recommended architecture for best business continuity outcomes?What is the recommended architecture for best business continuity outcomes?

As covered in the "Architecture" section, the main recommendation is to adopt shared nothing architectures as much as possible, by leveraging the native
capabilities and resources that Kubernetes provides in a single cluster, namely:

availability zones: spread your instances across different availability zones in the same Kubernetes cluster
worker nodes: as a consequence, make sure that your Postgres instances reside on different Kubernetes worker nodes
storage: use dedicated storage for each worker node running Postgres

Use at least one standby, preferably at least two, so that you can configure synchronous replication in the cluster, introducing RPO=0 for high availability.

If you do not have availability zones - normally the case of on-premise installations - separate on worker nodes and storage.

Properly setup continuous backup on a local/regional object store.

The same architecture that is in a single Kubernetes cluster can be replicated in another Kubernetes cluster (normally in another geographical area or
region) through the replica cluster feature, providing disaster recovery and high availability at global scale.

You can use the WAL archive in the primary object store to feed the replica in the other region, without having to provide a streaming connection, if the
default maximum RPO of 5 minutes is enough for you.

How can instances be stopped or started?How can instances be stopped or started?

Please look at "Fencing" or "Hibernation".

What are the global objects such as roles and databases that are automatically created by EDB Postgres for Kubernetes?What are the global objects such as roles and databases that are automatically created by EDB Postgres for Kubernetes?

The operator automatically creates a user for the application (by default called app) and a database for the application (by default called app) which is
owned by the aforementioned user.

This way, the database is ready for a microservice adoption, as developers can control migrations using the app user, without requiring superuser access.

Teams can then create another user for read-write operations through the "Declarative role management" feature and assign the required GRANT to the
tables.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: pg-
italy
spec::
 instances:: 1

 postgresql::
 parameters::
 timezone:: "Europe/Rome"

 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 442

54 Troubleshooting

In this page, you can find some basic information on how to troubleshoot EDB Postgres for Kubernetes in your Kubernetes cluster deployment.

HintHint

As a Kubernetes administrator, you should have the kubectl Cheat Sheet page bookmarked!

Before you start

Kubernetes environment

What can make a difference in a troubleshooting activity is to provide clear information about the underlying Kubernetes system.

Make sure you know:

the Kubernetes distribution and version you are using
the specifications of the nodes where PostgreSQL is running
as much as you can about the actual storage, including storage class and benchmarks you have done before going into production.
which relevant Kubernetes applications you are using in your cluster (i.e. Prometheus, Grafana, Istio, Certmanager, ...)
the situation of continuous backup, in particular if it's in place and working correctly: in case it is not, make sure you take an emergency backup
before performing any potential disrupting operation

Useful utilities

On top of the mandatory kubectl utility, for troubleshooting, we recommend the following plugins/utilities to be available in your system:

cnp plugin for kubectl
jq , a lightweight and flexible command-line JSON processor
grep , searches one or more input files for lines containing a match to a specified pattern. It is already available in most *nix distros. If you are on

Windows OS, you can use findstr as an alternative to grep or directly use wsl and install your preferred *nix distro and use the tools
mentioned above.

First steps

To quickly get an overview of the cluster or installation, the kubectl plugin is the primary tool to use:

1. the status subcommand provides an overview of a cluster
2. the report subcommand provides the manifests for clusters and the operator deployment. It can also include logs using the --logs option. The

report generated via the plugin will include the full cluster manifest.

The plugin can be installed on air-gapped systems via packages. Please refer to the plugin document for complete instructions.

Are there backups?

After getting the cluster manifest with the plugin, you should verify if backups are set up and working.

In a cluster with backups set up, you will find, in the cluster Status, the fields lastSuccessfulBackup and firstRecoverabilityPoint . You
should make sure there is a recent lastSuccessfulBackup .

A cluster lacking the .spec.backup stanza won't have backups. An insistent message will appear in the PostgreSQL logs:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 443

https://kubernetes.io/docs/reference/kubectl/cheatsheet/
https://stedolan.github.io/jq/
https://www.gnu.org/software/grep/
https://docs.microsoft.com/en-us/windows-server/administration/windows-commands/findstr
https://docs.microsoft.com/en-us/windows/wsl/

A cluster lacking the .spec.backup stanza won't have backups. An insistent message will appear in the PostgreSQL logs:

Backup not configured, skip WAL archiving.

Before proceeding with troubleshooting operations, it may be advisable to perform an emergency backup depending on your findings regarding backups.
Refer to the following section for instructions.

It is extremely riskyextremely risky to operate a production database without keeping regular backups.

Emergency backup

In some emergency situations, you might need to take an emergency logical backup of the main app database.

ImportantImportant

The instructions you find below must be executed only in emergency situations and the temporary backup files kept under the data protection
policies that are effective in your organization. The dump file is indeed stored in the client machine that runs the kubectl command, so make
sure that all protections are in place and you have enough space to store the backup file.

The following example shows how to take a logical backup of the app database in the cluster-example Postgres cluster, from the cluster-
example-1 pod:

NoteNote

You can easily adapt the above command to backup your cluster, by providing the names of the objects you have used in your environment.

The above command issues a pg_dump command in custom format, which is the most versatile way to take logical backups in PostgreSQL.

The next step is to restore the database. We assume that you are operating on a new PostgreSQL cluster that's been just initialized (so the app database is
empty).

The following example shows how to restore the above logical backup in the app database of the new-cluster-example Postgres cluster, by
connecting to the primary (new-cluster-example-1 pod):

ImportantImportant

The example in this section assumes that you have no other global objects (databases and roles) to dump and restore, as per our
recommendation. In case you have multiple roles, make sure you have taken a backup using pg_dumpall -g and you manually restore them
in the new cluster. In case you have multiple databases, you need to repeat the above operation one database at a time, making sure you assign
the right ownership. If you are not familiar with PostgreSQL, we advise that you do these critical operations under the guidance of a professional
support company.

The above steps might be integrated into the cnp plugin at some stage in the future.

kubectl exec cluster-example-1 -c postgres
\
 -- pg_dump -Fc -d app >>
app.dump

kubectl exec -i new-cluster-example-1 -c postgres
\
 -- pg_restore --no-owner --role==app -d app --verbose <<
app.dump

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 444

https://www.postgresql.org/docs/current/app-pgdump.html

Logs

All resources created and managed by EDB Postgres for Kubernetes log to standard output in accordance with Kubernetes conventions, using JSON format.

While logs are typically processed at the infrastructure level and include those from EDB Postgres for Kubernetes, accessing logs directly from the
command line interface is critical during troubleshooting. You have three primary options for doing so:

Use the kubectl logs command to retrieve logs from a specific resource, and apply jq for better readability.
Use the kubectl cnp logs command for EDB Postgres for Kubernetes-specific logging.
Leverage specialized open-source tools like stern, which can aggregate logs from multiple resources (e.g., all pods in a PostgreSQL cluster by
selecting the k8s.enterprisedb.io/clusterName label), filter log entries, customize output formats, and more.

NoteNote

The following sections provide examples of how to retrieve logs for various resources when troubleshooting EDB Postgres for Kubernetes.

Operator information

By default, the EDB Postgres for Kubernetes operator is installed in the postgresql-operator-system namespace in Kubernetes as a
Deployment (see the "Details about the deployment" section for details).

You can get a list of the operator pods by running:

kubectl get pods -n postgresql-operator-system

NoteNote

Under normal circumstances, you should have one pod where the operator is running, identified by a name starting with postgresql-
operator-controller-manager- . In case you have set up your operator for high availability, you should have more entries. Those pods
are managed by a deployment named postgresql-operator-controller-manager .

Collect the relevant information about the operator that is running in pod <POD> with:

kubectl describe pod -n postgresql-operator-system <POD>

Then get the logs from the same pod by running:

kubectl logs -n postgresql-operator-system <POD>

Gather more information about the operator

Get logs from all pods in EDB Postgres for Kubernetes operator Deployment (in case you have a multi operator deployment) by running:

kubectl logs -n postgresql-operator-system \
 deployment/postgresql-operator-controller-manager --all-containers=true

TipTip

You can add -f flag to above command to follow logs in real time.

Save logs to a JSON file by running:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 445

https://github.com/stern/stern

kubectl logs -n postgresql-operator-system \
 deployment/postgresql-operator-controller-manager --all-containers=true | \
 jq -r . > cnp_logs.json

Get EDB Postgres for Kubernetes operator version by using kubectl-cnp plugin:

kubectl-cnp status <CLUSTER>

Output:

Cluster in healthy state
Name: cluster-example
Namespace: default
System ID: 7044925089871458324
PostgreSQL Image: quay.io/enterprisedb/postgresql:17.5-3
Primary instance: cluster-example-1
Instances: 3
Ready instances: 3
Current Write LSN: 0/5000000 (Timeline: 1 - WAL File: 000000010000000000000004)

Continuous Backup status
Not configured

Streaming Replication status
Name Sent LSN Write LSN Flush LSN Replay LSN Write Lag Flush Lag Replay Lag
State Sync State Sync Priority
---- -------- --------- --------- ---------- --------- --------- ----------
----- ---------- -------------
cluster-example-2 0/5000000 0/5000000 0/5000000 0/5000000 00:00:00 00:00:00 00:00:00
streaming async 0
cluster-example-3 0/5000000 0/5000000 0/5000000 0/5000000 00:00:00.10033 00:00:00.10033
00:00:00.10033 streaming async 0

Instances status
Name Database Size Current LSN Replication role Status QoS Manager Version
---- ------------- ----------- ---------------- ------ --- ---------------
cluster-example-1 33 MB 0/5000000 Primary OK BestEffort 1.12.0
cluster-example-2 33 MB 0/5000000 Standby (async) OK BestEffort 1.12.0
cluster-example-3 33 MB 0/5000060 Standby (async) OK BestEffort 1.12.0

Cluster information

You can check the status of the <CLUSTER> cluster in the NAMESPACE namespace with:

kubectl get cluster -n <NAMESPACE> <CLUSTER>

Output:

NAME AGE INSTANCES READY STATUS PRIMARY
<CLUSTER> 10d4h3m 3 3 Cluster in healthy state <CLUSTER>-1

The above example reports a healthy PostgreSQL cluster of 3 instances, all in ready state, and with <CLUSTER>-1 being the primary.

In case of unhealthy conditions, you can discover more by getting the manifest of the Cluster resource:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 446

kubectl get cluster -o yaml -n <NAMESPACE> <CLUSTER>

Another important command to gather is the status one, as provided by the cnp plugin:

kubectl cnp status -n <NAMESPACE> <CLUSTER>

TipTip

You can print more information by adding the --verbose option.

Get EDB PostgreSQL Advanced Server (EPAS) / PostgreSQL container image version:

kubectl describe cluster <CLUSTER_NAME> -n <NAMESPACE> | grep "Image Name"

Output:

 Image Name: quay.io/enterprisedb/postgresql:17.5-3

NoteNote

Also you can use kubectl-cnp status -n <NAMESPACE> <CLUSTER_NAME> to get the same information.

Pod information

You can retrieve the list of instances that belong to a given PostgreSQL cluster with:

using labels available from CNP 1.12.0
kubectl get pod -l k8s.enterprisedb.io/cluster=<CLUSTER> -L role -n <NAMESPACE>
using legacy labels
kubectl get pod -l postgresql=<CLUSTER> -L role -n <NAMESPACE>

Output:

NAME READY STATUS RESTARTS AGE ROLE
<CLUSTER>-1 1/1 Running 0 10d4h5m primary
<CLUSTER>-2 1/1 Running 0 10d4h4m replica
<CLUSTER>-3 1/1 Running 0 10d4h4m replica

You can check if/how a pod is failing by running:

kubectl get pod -n <NAMESPACE> -o yaml <CLUSTER>-<N>

You can get all the logs for a given PostgreSQL instance with:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N>

If you want to limit the search to the PostgreSQL process only, you can run:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | \
 jq 'select(.logger=="postgres") | .record.message'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 447

The following example also adds the timestamp:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | \
 jq -r 'select(.logger=="postgres") | [.ts, .record.message] | @csv'

If the timestamp is displayed in Unix Epoch time, you can convert it to a user-friendly format:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | \
 jq -r 'select(.logger=="postgres") | [(.ts|strflocaltime("%Y-%m-%dT%H:%M:%S %Z")), .record.message] |
@csv'

Gather and filter extra information about PostgreSQL pods

Check logs from a specific pod that has crashed:

kubectl logs -n <NAMESPACE> --previous <CLUSTER>-<N>

Get FATAL errors from a specific PostgreSQL pod:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | \
 jq -r '.record | select(.error_severity == "FATAL")'

Output:

Filter PostgreSQL DB error messages in logs for a specific pod:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | jq -r '.err | select(. != null)'

Output:

dial unix /controller/run/.s.PGSQL.5432: connect: no such file or directory

Get messages matching err word from a specific pod:

{
 "log_time": "2021-11-08 14:07:44.520 UTC",
 "user_name": "streaming_replica",
 "process_id": "68",
 "connection_from": "10.244.0.10:60616",
 "session_id": "61892f30.44",
 "session_line_num": "1",
 "command_tag": "startup",
 "session_start_time": "2021-11-08 14:07:44
UTC",
 "virtual_transaction_id": "3/75",
 "transaction_id": "0",
 "error_severity": "FATAL",
 "sql_state_code": "28000",
 "message": "role \"streaming_replica\" does not
exist",
 "backend_type": "walsender"
}

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 448

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | jq -r '.msg' | grep "err"

Output:

2021-11-08 14:07:39.610 UTC [15] LOG: ending log output to stderr

Get all logs from PostgreSQL process from a specific pod:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | \
 jq -r '. | select(.logger == "postgres") | select(.msg != "record") | .msg'

Output:

2021-11-08 14:07:52.591 UTC [16] LOG: redirecting log output to logging collector process
2021-11-08 14:07:52.591 UTC [16] HINT: Future log output will appear in directory "/controller/log".
2021-11-08 14:07:52.591 UTC [16] LOG: ending log output to stderr
2021-11-08 14:07:52.591 UTC [16] HINT: Future log output will go to log destination "csvlog".

Get pod logs filtered by fields with values and join them separated by | running:

kubectl logs -n <NAMESPACE> <CLUSTER>-<N> | \
 jq -r '[.level, .ts, .logger, .msg] | join(" | ")'

Output:

info | 1636380469.5728037 | wal-archive | Backup not configured, skip WAL archiving
info | 1636383566.0664876 | postgres | record

Backup information

You can list the backups that have been created for a named cluster with:

kubectl get backup -l k8s.enterprisedb.io/cluster=<CLUSTER>

Storage information

Sometimes is useful to double-check the StorageClass used by the cluster to have some more context during investigations or troubleshooting, like this:

STORAGECLASS=$(kubectl get pvc <POD> -o jsonpath='{.spec.storageClassName}')
kubectl get storageclasses $STORAGECLASS -o yaml

We are taking the StorageClass from one of the cluster pod here since often clusters are created using the default StorageClass.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 449

Node information

Kubernetes nodes is where ultimately PostgreSQL pods will be running. It's strategically important to know as much as we can about them.

You can get the list of nodes in your Kubernetes cluster with:

look at the worker nodes and their status
kubectl get nodes -o wide

Additionally, you can gather the list of nodes where the pods of a given cluster are running with:

kubectl get pod -l k8s.enterprisedb.io/cluster=<CLUSTER> \
 -L role -n <NAMESPACE> -o wide

The latter is important to understand where your pods are distributed - very useful if you are using affinity/anti-affinity rules and/or tolerations.

Conditions

Like many native kubernetes objects like here, Cluster exposes status.conditions as well. This allows one to 'wait' for a particular event to occur
instead of relying on the overall cluster health state. Available conditions as of now are:

LastBackupSucceeded
ContinuousArchiving
Ready

LastBackupSucceeded is reporting the status of the latest backup. If set to True the last backup has been taken correctly, it is set to False
otherwise.

ContinuousArchiving is reporting the status of the WAL archiving. If set to True the last WAL archival process has been terminated correctly, it is
set to False otherwise.

Ready is True when the cluster has the number of instances specified by the user and the primary instance is ready. This condition can be used in
scripts to wait for the cluster to be created.

How to wait for a particular condition

Backup:

ContinuousArchiving:

Ready (Cluster is ready or not):

Below is a snippet of a cluster.status that contains a failing condition.

$ kubectl wait --for==condition=LastBackupSucceeded cluster/<<CLUSTER-NAME>> -n
<<NAMESPACE>>

$ kubectl wait --for==condition=ContinuousArchiving cluster/<<CLUSTER-NAME>> -n
<<NAMESPACE>>

$ kubectl wait --for==condition=Ready cluster/<<CLUSTER-NAME>> -n
<<NAMESPACE>>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 450

https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle/#pod-conditions

Networking

EDB Postgres for Kubernetes requires basic networking and connectivity in place. You can find more information in the networking section.

If installing EDB Postgres for Kubernetes in an existing environment, there might be network policies in place, or other network configuration made
specifically for the cluster, which could have an impact on the required connectivity between the operator and the cluster pods and/or the between the
pods.

You can look for existing network policies with the following command:

There might be several network policies set up by the Kubernetes network administrator.

$ kubectl get cluster/<<cluster-name>> -o
yaml
.
.
.
 status:
 conditions:
 - message: 'unexpected failure invoking barman-cloud-wal-archive: exit
status
 2'
 reason:
ContinuousArchivingFailing
 status: "False"
 type:
ContinuousArchiving

 - message: exit status
2
 reason:
LastBackupFailed
 status: "False"
 type:
LastBackupSucceeded

 - message: Cluster Is Not
Ready
 reason: ClusterIsNotReady
 status: "False"
 type: Ready

kubectl get
networkpolicies

$ kubectl get networkpolicies
NAME POD-SELECTOR
AGE
allow-prometheus k8s.enterprisedb.io/cluster=cluster-example
47m
default-deny-ingress <<none>>
57m

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 451

PostgreSQL core dumps

Although rare, PostgreSQL can sometimes crash and generate a core dump in the PGDATA folder. When that happens, normally it is a bug in PostgreSQL
(and most likely it has already been solved - this is why it is important to always run the latest minor version of PostgreSQL).

EDB Postgres for Kubernetes allows you to control what to include in the core dump through the k8s.enterprisedb.io/coredumpFilter
annotation.

InfoInfo

Please refer to "Labels and annotations" for more details on the standard annotations that EDB Postgres for Kubernetes provides.

By default, the k8s.enterprisedb.io/coredumpFilter is set to 0x31 in order to exclude shared memory segments from the dump, as this is
the safest approach in most cases.

InfoInfo

Please refer to "Core dump filtering settings" section of "The /proc Filesystem" page of the Linux Kernel documentation. for more details on
how to set the bitmask that controls the core dump filter.

ImportantImportant

Beware that this setting only takes effect during Pod startup and that changing the annotation doesn't trigger an automated rollout of the
instances.

Although you might not personally be involved in inspecting core dumps, you might be asked to provide them so that a Postgres expert can look into them.
First, verify that you have a core dump in the PGDATA directory with the following command (please run it against the correct pod where the Postgres
instance is running):

Under normal circumstances, this should return an empty set. Suppose, for example, that we have a core dump file:

/var/lib/postgresql/data/pgdata/core.14177

Once you have verified the space on disk is sufficient, you can collect the core dump on your machine through kubectl cp as follows:

You now have the file. Make sure you free the space on the server by removing the core dumps.

Some known issues

Storage is full

In case the storage is full, the PostgreSQL pods will not be able to write new data, or, in case of the disk containing the WAL segments being full,
PostgreSQL will shut down.

If you see messages in the logs about the disk being full, you should increase the size of the affected PVC. You can do this by editing the PVC and changing
the spec.resources.requests.storage field. After that, you should also update the Cluster resource with the new size to apply the same change
to all the pods. Please look at the "Volume expansion" section in the documentation.

kubectl exec -ti POD -c postgres
\
 -- find /var/lib/postgresql/data/pgdata -name
'core.*'

kubectl cp POD:/var/lib/postgresql/data/pgdata/core.14177 core.14177

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 452

https://docs.kernel.org/filesystems/proc.html#proc-pid-coredump-filter-core-dump-filtering-settings

If the space for WAL segments is exhausted, the pod will be crash-looping and the cluster status will report Not enough disk space . Increasing the
size in the PVC and then in the Cluster resource will solve the issue. See also the "Disk Full Failure" section

Pods are stuck in Pending state

In case a Cluster's instance is stuck in the Pending phase, you should check the pod's Events section to get an idea of the reasons behind this:

kubectl describe pod -n <NAMESPACE> <POD>

Some of the possible causes for this are:

No nodes are matching the nodeSelector
Tolerations are not correctly configured to match the nodes' taints
No nodes are available at all: this could also be related to cluster-autoscaler hitting some limits, or having some temporary issues

In this case, it could also be useful to check events in the namespace:

kubectl get events -n <NAMESPACE>
list events in chronological order
kubectl get events -n <NAMESPACE> --sort-by=.metadata.creationTimestamp

Replicas out of sync when no backup is configured

Sometimes replicas might be switched off for a bit of time due to maintenance reasons (think of when a Kubernetes nodes is drained). In case your cluster
does not have backup configured, when replicas come back up, they might require a WAL file that is not present anymore on the primary (having been
already recycled according to the WAL management policies as mentioned in "The postgresql section"), and fall out of synchronization.

Similarly, when pg_rewind might require a WAL file that is not present anymore in the former primary, reporting pg_rewind: error: could not
open file .

In these cases, pods cannot become ready anymore, and you are required to delete the PVC and let the operator rebuild the replica.

If you rely on dynamically provisioned Persistent Volumes, and you are confident in deleting the PV itself, you can do so with:

PODNAME=<POD>
VOLNAME=$(kubectl get pv -o json | \
 jq -r '.items[]|select(.spec.claimRef.name=='\"$PODNAME\"')|.metadata.name')

kubectl delete pod/$PODNAME pvc/$PODNAME pvc/$PODNAME-wal pv/$VOLNAME

Cluster stuck in Creating new replica

Cluster is stuck in "Creating a new replica", while pod logs don't show relevant problems. This has been found to be related to the next issue on
connectivity. Networking issues are reflected in the status column as follows:

Instance Status Extraction Error: HTTP communication issue

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 453

Networking is impaired by installed Network Policies

As pointed out in the networking section, local network policies could prevent some of the required connectivity.

A tell-tale sign that connectivity is impaired is the presence in the operator logs of messages like:

"Cannot extract Pod status", […snipped…] "Get \"http://<pod IP>:8000/pg/status\": dial tcp <pod IP>:8000:
i/o timeout"

You should list the network policies, and look for any policies restricting connectivity.

For example, in the listing above, default-deny-ingress seems a likely culprit. You can drill into it:

In the networking page you can find a network policy file that you can customize to create a NetworkPolicy explicitly allowing the operator to connect
cross-namespace to cluster pods.

Error while bootstrapping the data directory

If your Cluster's initialization job crashes with a "Bus error (core dumped) child process exited with exit code 135", you likely need to fix the Cluster
hugepages settings.

The reason is the incomplete support of hugepages in the cgroup v1 that should be fixed in v2. For more information, check the PostgreSQL BUG #17757:
Not honoring huge_pages setting during initdb causes DB crash in Kubernetes.

To check whether hugepages are enabled, run grep HugePages /proc/meminfo on the Kubernetes node and check if hugepages are present, their
size, and how many are free.

If the hugepages are present, you need to configure how much hugepages memory every PostgreSQL pod should have available.

For example:

$ kubectl get networkpolicies
NAME POD-SELECTOR
AGE
allow-prometheus k8s.enterprisedb.io/cluster=cluster-example
47m
default-deny-ingress <<none>>
57m

$ kubectl get networkpolicies default-deny-ingress -o
yaml
<<…snipped…>>
spec:
 podSelector: {}
 policyTypes:
 - Ingress

 postgresql::
 parameters::
 shared_buffers:: "128MB"

 resources::
 requests::
 memory:: "512Mi"
 limits::
 hugepages-2Mi:: "512Mi"

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 454

https://www.postgresql.org/message-id/17757-dbdfc1f1c954a6db%2540postgresql.org

Please remember that you must have enough hugepages memory available to schedule every Pod in the Cluster (in the example above, at least 512MiB per
Pod must be free).

Bootstrap job hangs in running status

If your Cluster's initialization job hangs while in Running status with the message: "error while waiting for the API server to be reachable", you probably
have a network issue preventing communication with the Kubernetes API server. Initialization jobs (like most of jobs) need to access the Kubernetes API.
Please check your networking.

Another possible cause is when you have sidecar injection configured. Sidecars such as Istio may make the network temporarily unavailable during startup.
If you have sidecar injection enabled, retry with injection disabled.

Replicas take over two minutes to reconnect after a failover

When the primary instance fails, the operator promotes the most advanced standby to the primary role. Other standby instances then attempt to reconnect
to the -rw service for replication. However, during this reconnection process, kube-proxy may not have updated its routing information yet. As a
result, the initial SYN packet sent by the standby instances might fail to reach its intended destination.

If the network is configured to silently drop packets instead of rejecting them, standby instances will not receive a response and will retry the connection
after an exponential backoff period. On Linux systems, the default value for the tcp_syn_retries kernel parameter is 6, meaning the system will
attempt to establish the connection for approximately 127 seconds before giving up. This prolonged retry period can significantly delay the reconnection
process. For more details, consult the tcp_syn_retries documentation.

You can work around this issue by setting STANDBY_TCP_USER_TIMEOUT in the operator configuration. This will cause the standby instances to close
the TCP connection if the initial SYN packet is not acknowledged within the specified timeout, allowing them to retry the connection more quickly.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 455

https://www.kernel.org/doc/Documentation/networking/ip-sysctl.txt

55 API Reference - v1.26.0

Package v1 contains API Schema definitions for the postgresql v1 API group

Resource Types

Backup
Cluster
ClusterImageCatalog
Database
ImageCatalog
Pooler
Publication
ScheduledBackup
Subscription

Backup

A Backup resource is a request for a PostgreSQL backup by the user.

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

Backup

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
BackupSpec

Specification of the desired behavior of the backup. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

status
BackupStatus

Most recently observed status of the backup. This data may not be up to date. Populated by the system.
Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#spec-and-status

Cluster

Cluster is the Schema for the PostgreSQL API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

Cluster

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 456

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta

spec [Required][Required]
ClusterSpec

Specification of the desired behavior of the cluster. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

status
ClusterStatus

Most recently observed status of the cluster. This data may not be up to date. Populated by the system.
Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#spec-and-status

Field Description

ClusterImageCatalog

ClusterImageCatalog is the Schema for the clusterimagecatalogs API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

ClusterImageCatalog

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
ImageCatalogSpec

Specification of the desired behavior of the ClusterImageCatalog. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

Database

Database is the Schema for the databases API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

Database

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
DatabaseSpec

Specification of the desired Database. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#spec-and-status

status
DatabaseStatus

Most recently observed status of the Database. This data may not be up to date. Populated by the system.
Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#spec-and-status

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 457

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta

ImageCatalog

ImageCatalog is the Schema for the imagecatalogs API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

ImageCatalog

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
ImageCatalogSpec

Specification of the desired behavior of the ImageCatalog. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

Pooler

Pooler is the Schema for the poolers API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

Pooler

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
PoolerSpec

Specification of the desired behavior of the Pooler. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

status
PoolerStatus

Most recently observed status of the Pooler. This data may not be up to date. Populated by the system.
Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#spec-and-status

Publication

Publication is the Schema for the publications API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

Publication

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 458

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta

spec [Required][Required]
PublicationSpec

No description provided.

status [Required][Required]
PublicationStatus

No description provided.

Field Description

ScheduledBackup

ScheduledBackup is the Schema for the scheduledbackups API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

ScheduledBackup

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
ScheduledBackupSpec

Specification of the desired behavior of the ScheduledBackup. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

status
ScheduledBackupStatus

Most recently observed status of the ScheduledBackup. This data may not be up to date. Populated by the
system. Read-only. More info: https://git.k8s.io/community/contributors/devel/sig-architecture/api-
conventions.md#spec-and-status

Subscription

Subscription is the Schema for the subscriptions API

Field Description

apiVersion [Required][Required]
string

postgresql.k8s.enterprisedb.io/v1

kind [Required][Required]
string

Subscription

metadata [Required][Required]
meta/v1.ObjectMeta

No description provided.Refer to the Kubernetes API documentation for the fields of the metadata
field.

spec [Required][Required]
SubscriptionSpec

No description provided.

status [Required][Required]
SubscriptionStatus

No description provided.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 459

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#objectmeta-v1-meta

AffinityConfiguration

Appears in:Appears in:

ClusterSpec

AffinityConfiguration contains the info we need to create the affinity rules for Pods

Field Description

enablePodAntiAffinity
bool

Activates anti-affinity for the pods. The operator will define pods anti-affinity unless this field is explicitly
set to false

topologyKey
string

TopologyKey to use for anti-affinity configuration. See k8s documentation for more info on that

nodeSelector
map[string]string

NodeSelector is map of key-value pairs used to define the nodes on which the pods can run. More info:
https://kubernetes.io/docs/concepts/configuration/assign-pod-node/

nodeAffinity
core/v1.NodeAffinity

NodeAffinity describes node affinity scheduling rules for the pod. More info:
https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#node-affinity

tolerations
[]core/v1.Toleration

Tolerations is a list of Tolerations that should be set for all the pods, in order to allow them to run on
tainted nodes. More info: https://kubernetes.io/docs/concepts/scheduling-eviction/taint-and-
toleration/

podAntiAffinityType
string

PodAntiAffinityType allows the user to decide whether pod anti-affinity between cluster instance has to
be considered a strong requirement during scheduling or not. Allowed values are: "preferred" (default if
empty) or "required". Setting it to "required", could lead to instances remaining pending until new
kubernetes nodes are added if all the existing nodes don't match the required pod anti-affinity rule. More
info: https://kubernetes.io/docs/concepts/scheduling-eviction/assign-pod-node/#inter-pod-affinity-
and-anti-affinity

additionalPodAntiAffinity
core/v1.PodAntiAffinity

AdditionalPodAntiAffinity allows to specify pod anti-affinity terms to be added to the ones generated by
the operator if EnablePodAntiAffinity is set to true (default) or to be used exclusively if set to false.

additionalPodAffinity
core/v1.PodAffinity

AdditionalPodAffinity allows to specify pod affinity terms to be passed to all the cluster's pods.

AvailableArchitecture

Appears in:Appears in:

ClusterStatus

AvailableArchitecture represents the state of a cluster's architecture

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 460

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#nodeaffinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#toleration-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#podantiaffinity-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#podaffinity-v1-core

Field Description

goArch [Required][Required]
string

GoArch is the name of the executable architecture

hash [Required][Required]
string

Hash is the hash of the executable

BackupConfiguration

Appears in:Appears in:

ClusterSpec

BackupConfiguration defines how the backup of the cluster are taken. The supported backup methods are BarmanObjectStore and VolumeSnapshot. For
details and examples refer to the Backup and Recovery section of the documentation

Field Description

volumeSnapshot
VolumeSnapshotConfiguration

VolumeSnapshot provides the configuration for the execution of volume snapshot backups.

barmanObjectStore
github.com/cloudnative-pg/barman-
cloud/pkg/api.BarmanObjectStoreConfiguration

The configuration for the barman-cloud tool suite

retentionPolicy
string

RetentionPolicy is the retention policy to be used for backups and WALs (i.e. '60d'). The retention
policy is expressed in the form of XXu where XX is a positive integer and u is in [dwm] - days,
weeks, months. It's currently only applicable when using the BarmanObjectStore method.

target
BackupTarget

The policy to decide which instance should perform backups. Available options are empty string,
which will default to prefer-standby policy, primary to have backups run always on
primary instances, prefer-standby to have backups run preferably on the most updated
standby, if available.

BackupMethod

(Alias of string)

Appears in:Appears in:

BackupSpec

BackupStatus

ScheduledBackupSpec

BackupMethod defines the way of executing the physical base backups of the selected PostgreSQL instance

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 461

https://pkg.go.dev/github.com/cloudnative-pg/barman-cloud/pkg/api/#BarmanObjectStoreConfiguration

BackupPhase

(Alias of string)

Appears in:Appears in:

BackupStatus

BackupPhase is the phase of the backup

BackupPluginConfiguration

Appears in:Appears in:

BackupSpec

ScheduledBackupSpec

BackupPluginConfiguration contains the backup configuration used by the backup plugin

Field Description

name [Required][Required]
string

Name is the name of the plugin managing this backup

parameters
map[string]string

Parameters are the configuration parameters passed to the backup plugin for this
backup

BackupSnapshotElementStatus

Appears in:Appears in:

BackupSnapshotStatus

BackupSnapshotElementStatus is a volume snapshot that is part of a volume snapshot method backup

Field Description

name [Required][Required]
string

Name is the snapshot resource name

type [Required][Required]
string

Type is tho role of the snapshot in the cluster, such as PG_DATA, PG_WAL and PG_TABLESPACE

tablespaceName
string

TablespaceName is the name of the snapshotted tablespace. Only set when type is PG_TABLESPACE

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 462

BackupSnapshotStatus

Appears in:Appears in:

BackupStatus

BackupSnapshotStatus the fields exclusive to the volumeSnapshot method backup

Field Description

elements
[]BackupSnapshotElementStatus

The elements list, populated with the gathered volume snapshots

BackupSource

Appears in:Appears in:

BootstrapRecovery

BackupSource contains the backup we need to restore from, plus some information that could be needed to correctly restore it.

Field Description

LocalObjectReference
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

(Members of LocalObjectReference are embedded into this type.) No description provided.

endpointCA
github.com/cloudnative-
pg/machinery/pkg/api.SecretKeySelector

EndpointCA store the CA bundle of the barman endpoint. Useful when using self-signed certificates to
avoid errors with certificate issuer and barman-cloud-wal-archive.

BackupSpec

Appears in:Appears in:

Backup

BackupSpec defines the desired state of Backup

Field Description

cluster [Required][Required]
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

The cluster to backup

target
BackupTarget

The policy to decide which instance should perform this backup. If empty, it defaults to
cluster.spec.backup.target . Available options are empty string, primary and prefer-
standby . primary to have backups run always on primary instances, prefer-standby to
have backups run preferably on the most updated standby, if available.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 463

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference
https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#SecretKeySelector
https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference

method
BackupMethod

The backup method to be used, possible options are barmanObjectStore , volumeSnapshot
or plugin . Defaults to: barmanObjectStore .

pluginConfiguration
BackupPluginConfiguration

Configuration parameters passed to the plugin managing this backup

online
bool

Whether the default type of backup with volume snapshots is online/hot (true , default) or
offline/cold (false) Overrides the default setting specified in the cluster field
'.spec.backup.volumeSnapshot.online'

onlineConfiguration
OnlineConfiguration

Configuration parameters to control the online/hot backup with volume snapshots Overrides the
default settings specified in the cluster '.backup.volumeSnapshot.onlineConfiguration' stanza

Field Description

BackupStatus

Appears in:Appears in:

Backup

BackupStatus defines the observed state of Backup

Field Description

BarmanCredentials
github.com/cloudnative-pg/barman-
cloud/pkg/api.BarmanCredentials

(Members of BarmanCredentials are embedded into this type.)

The potential credentials for each cloud provider

endpointCA
github.com/cloudnative-
pg/machinery/pkg/api.SecretKeySelector

EndpointCA store the CA bundle of the barman endpoint. Useful when using self-signed certificates to
avoid errors with certificate issuer and barman-cloud-wal-archive.

endpointURL
string

Endpoint to be used to upload data to the cloud, overriding the automatic endpoint discovery

destinationPath
string

The path where to store the backup (i.e. s3://bucket/path/to/folder) this path, with different destination
folders, will be used for WALs and for data. This may not be populated in case of errors.

serverName
string

The server name on S3, the cluster name is used if this parameter is omitted

encryption
string

Encryption method required to S3 API

backupId
string

The ID of the Barman backup

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 464

https://pkg.go.dev/github.com/cloudnative-pg/barman-cloud/pkg/api/#BarmanCredentials
https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#SecretKeySelector

backupName
string

The Name of the Barman backup

phase
BackupPhase

The last backup status

startedAt
meta/v1.Time

When the backup was started

stoppedAt
meta/v1.Time

When the backup was terminated

beginWal
string

The starting WAL

endWal
string

The ending WAL

beginLSN
string

The starting xlog

endLSN
string

The ending xlog

error
string

The detected error

commandOutput
string

Unused. Retained for compatibility with old versions.

commandError
string

The backup command output in case of error

backupLabelFile
[]byte

Backup label file content as returned by Postgres in case of online (hot) backups

tablespaceMapFile
[]byte

Tablespace map file content as returned by Postgres in case of online (hot) backups

instanceID
InstanceID

Information to identify the instance where the backup has been taken from

snapshotBackupStatus
BackupSnapshotStatus

Status of the volumeSnapshot backup

method
BackupMethod

The backup method being used

online
bool

Whether the backup was online/hot (true) or offline/cold (false)

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 465

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta

pluginMetadata
map[string]string

A map containing the plugin metadata

Field Description

BackupTarget

(Alias of string)

Appears in:Appears in:

BackupConfiguration

BackupSpec

ScheduledBackupSpec

BackupTarget describes the preferred targets for a backup

BootstrapConfiguration

Appears in:Appears in:

ClusterSpec

BootstrapConfiguration contains information about how to create the PostgreSQL cluster. Only a single bootstrap method can be defined among the
supported ones. initdb will be used as the bootstrap method if left unspecified. Refer to the Bootstrap page of the documentation for more information.

Field Description

initdb
BootstrapInitDB

Bootstrap the cluster via initdb

recovery
BootstrapRecovery

Bootstrap the cluster from a backup

pg_basebackup
BootstrapPgBaseBackup

Bootstrap the cluster taking a physical backup of another compatible PostgreSQL
instance

BootstrapInitDB

Appears in:Appears in:

BootstrapConfiguration

BootstrapInitDB is the configuration of the bootstrap process when initdb is used Refer to the Bootstrap page of the documentation for more information.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 466

Field Description

database
string

Name of the database used by the application. Default: app .

owner
string

Name of the owner of the database in the instance to be used by applications. Defaults to the value of
the database key.

secret
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

Name of the secret containing the initial credentials for the owner of the user database. If empty a new
secret will be created from scratch

redwood
bool

If we need to enable/disable Redwood compatibility. Requires EPAS and for EPAS defaults to true

options
[]string

The list of options that must be passed to initdb when creating the cluster. Deprecated: This could lead
to inconsistent configurations, please use the explicit provided parameters instead. If defined, explicit
values will be ignored.

dataChecksums
bool

Whether the -k option should be passed to initdb, enabling checksums on data pages (default:
false)

encoding
string

The value to be passed as option --encoding for initdb (default: UTF8)

localeCollate
string

The value to be passed as option --lc-collate for initdb (default: C)

localeCType
string

The value to be passed as option --lc-ctype for initdb (default: C)

locale
string

Sets the default collation order and character classification in the new database.

localeProvider
string

This option sets the locale provider for databases created in the new cluster. Available from
PostgreSQL 16.

icuLocale
string

Specifies the ICU locale when the ICU provider is used. This option requires localeProvider to be
set to icu . Available from PostgreSQL 15.

icuRules
string

Specifies additional collation rules to customize the behavior of the default collation. This option
requires localeProvider to be set to icu . Available from PostgreSQL 16.

builtinLocale
string

Specifies the locale name when the builtin provider is used. This option requires localeProvider
to be set to builtin . Available from PostgreSQL 17.

walSegmentSize
int

The value in megabytes (1 to 1024) to be passed to the --wal-segsize option for initdb (default:
empty, resulting in PostgreSQL default: 16MB)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 467

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference

postInitSQL
[]string

List of SQL queries to be executed as a superuser in the postgres database right after the cluster
has been created - to be used with extreme care (by default empty)

postInitApplicationSQL
[]string

List of SQL queries to be executed as a superuser in the application database right after the cluster has
been created - to be used with extreme care (by default empty)

postInitTemplateSQL
[]string

List of SQL queries to be executed as a superuser in the template1 database right after the cluster
has been created - to be used with extreme care (by default empty)

import
Import

Bootstraps the new cluster by importing data from an existing PostgreSQL instance using logical
backup (pg_dump and pg_restore)

postInitApplicationSQLRefs
SQLRefs

List of references to ConfigMaps or Secrets containing SQL files to be executed as a superuser in the
application database right after the cluster has been created. The references are processed in a
specific order: first, all Secrets are processed, followed by all ConfigMaps. Within each group, the
processing order follows the sequence specified in their respective arrays. (by default empty)

postInitTemplateSQLRefs
SQLRefs

List of references to ConfigMaps or Secrets containing SQL files to be executed as a superuser in the
template1 database right after the cluster has been created. The references are processed in a

specific order: first, all Secrets are processed, followed by all ConfigMaps. Within each group, the
processing order follows the sequence specified in their respective arrays. (by default empty)

postInitSQLRefs
SQLRefs

List of references to ConfigMaps or Secrets containing SQL files to be executed as a superuser in the
postgres database right after the cluster has been created. The references are processed in a

specific order: first, all Secrets are processed, followed by all ConfigMaps. Within each group, the
processing order follows the sequence specified in their respective arrays. (by default empty)

Field Description

BootstrapPgBaseBackup

Appears in:Appears in:

BootstrapConfiguration

BootstrapPgBaseBackup contains the configuration required to take a physical backup of an existing PostgreSQL cluster

Field Description

source [Required][Required]
string

The name of the server of which we need to take a physical backup

database
string

Name of the database used by the application. Default: app .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 468

owner
string

Name of the owner of the database in the instance to be used by applications. Defaults to the value of
the database key.

secret
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

Name of the secret containing the initial credentials for the owner of the user database. If empty a new
secret will be created from scratch

Field Description

BootstrapRecovery

Appears in:Appears in:

BootstrapConfiguration

BootstrapRecovery contains the configuration required to restore from an existing cluster using 3 methodologies: external cluster, volume snapshots or
backup objects. Full recovery and Point-In-Time Recovery are supported. The method can be also be used to create clusters in continuous recovery (replica
clusters), also supporting cascading replication when instances >

1. Once the cluster exits recovery, the password for the superuser will be changed through the provided secret. Refer to the Bootstrap page of the
documentation for more information.

Field Description

backup
BackupSource

The backup object containing the physical base backup from which to initiate the recovery procedure.
Mutually exclusive with source and volumeSnapshots .

source
string

The external cluster whose backup we will restore. This is also used as the name of the folder under
which the backup is stored, so it must be set to the name of the source cluster Mutually exclusive with
backup .

volumeSnapshots
DataSource

The static PVC data source(s) from which to initiate the recovery procedure. Currently supporting
VolumeSnapshot and PersistentVolumeClaim resources that map an existing PVC group,

compatible with EDB Postgres for Kubernetes, and taken with a cold backup copy on a fenced Postgres
instance (limitation which will be removed in the future when online backup will be implemented).
Mutually exclusive with backup .

recoveryTarget
RecoveryTarget

By default, the recovery process applies all the available WAL files in the archive (full recovery).
However, you can also end the recovery as soon as a consistent state is reached or recover to a point-
in-time (PITR) by specifying a RecoveryTarget object, as expected by PostgreSQL (i.e., timestamp,
transaction Id, LSN, ...). More info: https://www.postgresql.org/docs/current/runtime-config-
wal.html#RUNTIME-CONFIG-WAL-RECOVERY-TARGET

database
string

Name of the database used by the application. Default: app .

owner
string

Name of the owner of the database in the instance to be used by applications. Defaults to the value of
the database key.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 469

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference

secret
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

Name of the secret containing the initial credentials for the owner of the user database. If empty a new
secret will be created from scratch

Field Description

CatalogImage

Appears in:Appears in:

ImageCatalogSpec

CatalogImage defines the image and major version

Field Description

image [Required][Required]
string

The image reference

major [Required][Required]
int

The PostgreSQL major version of the image. Must be unique within the catalog.

CertificatesConfiguration

Appears in:Appears in:

CertificatesStatus

ClusterSpec

CertificatesConfiguration contains the needed configurations to handle server certificates.

Field Description

serverCASecret
string

The secret containing the Server CA certificate. If not defined, a new secret will be created with a self-
signed CA and will be used to generate the TLS certificate ServerTLSSecret.

Contains:

ca.crt : CA that should be used to validate the server certificate, used as sslrootcert in
client connection strings.
ca.key : key used to generate Server SSL certs, if ServerTLSSecret is provided, this can be

omitted.

serverTLSSecret
string

The secret of type kubernetes.io/tls containing the server TLS certificate and key that will be set as
ssl_cert_file and ssl_key_file so that clients can connect to postgres securely. If not

defined, ServerCASecret must provide also ca.key and a new secret will be created using the provided
CA.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 470

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference

replicationTLSSecret
string

The secret of type kubernetes.io/tls containing the client certificate to authenticate as the
streaming_replica user. If not defined, ClientCASecret must provide also ca.key , and a new

secret will be created using the provided CA.

clientCASecret
string

The secret containing the Client CA certificate. If not defined, a new secret will be created with a self-
signed CA and will be used to generate all the client certificates.

Contains:

ca.crt : CA that should be used to validate the client certificates, used as ssl_ca_file of
all the instances.
ca.key : key used to generate client certificates, if ReplicationTLSSecret is provided, this can be

omitted.

serverAltDNSNames
[]string

The list of the server alternative DNS names to be added to the generated server TLS certificates, when
required.

Field Description

CertificatesStatus

Appears in:Appears in:

ClusterStatus

CertificatesStatus contains configuration certificates and related expiration dates.

Field Description

CertificatesConfiguration
CertificatesConfiguration

(Members of CertificatesConfiguration are embedded into this type.)

Needed configurations to handle server certificates, initialized with default values, if needed.

expirations
map[string]string

Expiration dates for all certificates.

ClusterMonitoringTLSConfiguration

Appears in:Appears in:

MonitoringConfiguration

ClusterMonitoringTLSConfiguration is the type containing the TLS configuration for the cluster's monitoring

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 471

enabled
bool

Enable TLS for the monitoring endpoint. Changing this option will force a rollout of all instances.

Field Description

ClusterSpec

Appears in:Appears in:

Cluster

ClusterSpec defines the desired state of Cluster

Field Description

description
string

Description of this PostgreSQL cluster

inheritedMetadata
EmbeddedObjectMetadata

Metadata that will be inherited by all objects related to the Cluster

imageName
string

Name of the container image, supporting both tags (<image>:<tag>) and digests for deterministic
and repeatable deployments (<image>:<tag>@sha256:<digestValue>)

imageCatalogRef
ImageCatalogRef

Defines the major PostgreSQL version we want to use within an ImageCatalog

imagePullPolicy
core/v1.PullPolicy

Image pull policy. One of Always , Never or IfNotPresent . If not defined, it defaults to
IfNotPresent . Cannot be updated. More info:

https://kubernetes.io/docs/concepts/containers/images#updating-images

schedulerName
string

If specified, the pod will be dispatched by specified Kubernetes scheduler. If not specified, the pod will
be dispatched by the default scheduler. More info: https://kubernetes.io/docs/concepts/scheduling-
eviction/kube-scheduler/

postgresUID
int64

The UID of the postgres user inside the image, defaults to 26

postgresGID
int64

The GID of the postgres user inside the image, defaults to 26

instances [Required][Required]
int

Number of instances required in the cluster

minSyncReplicas
int

Minimum number of instances required in synchronous replication with the primary. Undefined or 0
allow writes to complete when no standby is available.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 472

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#pullpolicy-v1-core

maxSyncReplicas
int

The target value for the synchronous replication quorum, that can be decreased if the number of ready
standbys is lower than this. Undefined or 0 disable synchronous replication.

postgresql
PostgresConfiguration

Configuration of the PostgreSQL server

replicationSlots
ReplicationSlotsConfiguration

Replication slots management configuration

bootstrap
BootstrapConfiguration

Instructions to bootstrap this cluster

replica
ReplicaClusterConfiguration

Replica cluster configuration

superuserSecret
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

The secret containing the superuser password. If not defined a new secret will be created with a
randomly generated password

enableSuperuserAccess
bool

When this option is enabled, the operator will use the SuperuserSecret to update the
postgres user password (if the secret is not present, the operator will automatically create one).

When this option is disabled, the operator will ignore the SuperuserSecret content, delete it
when automatically created, and then blank the password of the postgres user by setting it to
NULL . Disabled by default.

certificates
CertificatesConfiguration

The configuration for the CA and related certificates

imagePullSecrets
[]github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

The list of pull secrets to be used to pull the images. If the license key contains a pull secret that secret
will be automatically included.

storage
StorageConfiguration

Configuration of the storage of the instances

serviceAccountTemplate
ServiceAccountTemplate

Configure the generation of the service account

walStorage
StorageConfiguration

Configuration of the storage for PostgreSQL WAL (Write-Ahead Log)

ephemeralVolumeSource
core/v1.EphemeralVolumeSource

EphemeralVolumeSource allows the user to configure the source of ephemeral volumes.

startDelay
int32

The time in seconds that is allowed for a PostgreSQL instance to successfully start up (default 3600).
The startup probe failure threshold is derived from this value using the formula: ceiling(startDelay /
10).

stopDelay
int32

The time in seconds that is allowed for a PostgreSQL instance to gracefully shutdown (default 1800)

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 473

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference
https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#ephemeralvolumesource-v1-core

smartStopDelay
int32

Deprecated: please use SmartShutdownTimeout instead

smartShutdownTimeout
int32

The time in seconds that controls the window of time reserved for the smart shutdown of Postgres to
complete. Make sure you reserve enough time for the operator to request a fast shutdown of Postgres
(that is: stopDelay - smartShutdownTimeout).

switchoverDelay
int32

The time in seconds that is allowed for a primary PostgreSQL instance to gracefully shutdown during a
switchover. Default value is 3600 seconds (1 hour).

failoverDelay
int32

The amount of time (in seconds) to wait before triggering a failover after the primary PostgreSQL
instance in the cluster was detected to be unhealthy

livenessProbeTimeout
int32

LivenessProbeTimeout is the time (in seconds) that is allowed for a PostgreSQL instance to
successfully respond to the liveness probe (default 30). The Liveness probe failure threshold is derived
from this value using the formula: ceiling(livenessProbe / 10).

affinity
AffinityConfiguration

Affinity/Anti-affinity rules for Pods

topologySpreadConstraints
[]core/v1.TopologySpreadConstraint

TopologySpreadConstraints specifies how to spread matching pods among the given topology. More
info: https://kubernetes.io/docs/concepts/scheduling-eviction/topology-spread-constraints/

resources
core/v1.ResourceRequirements

Resources requirements of every generated Pod. Please refer to
https://kubernetes.io/docs/concepts/configuration/manage-resources-containers/ for more
information.

ephemeralVolumesSizeLimit
EphemeralVolumesSizeLimitConfiguration

EphemeralVolumesSizeLimit allows the user to set the limits for the ephemeral volumes

priorityClassName
string

Name of the priority class which will be used in every generated Pod, if the PriorityClass specified does
not exist, the pod will not be able to schedule. Please refer to
https://kubernetes.io/docs/concepts/scheduling-eviction/pod-priority-preemption/#priorityclass for
more information

primaryUpdateStrategy
PrimaryUpdateStrategy

Deployment strategy to follow to upgrade the primary server during a rolling update procedure, after
all replicas have been successfully updated: it can be automated (unsupervised - default) or
manual (supervised)

primaryUpdateMethod
PrimaryUpdateMethod

Method to follow to upgrade the primary server during a rolling update procedure, after all replicas
have been successfully updated: it can be with a switchover (switchover) or in-place (restart -
default)

backup
BackupConfiguration

The configuration to be used for backups

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 474

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#topologyspreadconstraint-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#resourcerequirements-v1-core

nodeMaintenanceWindow
NodeMaintenanceWindow

Define a maintenance window for the Kubernetes nodes

licenseKey
string

The license key of the cluster. When empty, the cluster operates in trial mode and after the expiry date
(default 30 days) the operator will cease any reconciliation attempt. For details, please refer to the
license agreement that comes with the operator.

licenseKeySecret
core/v1.SecretKeySelector

The reference to the license key. When this is set it take precedence over LicenseKey.

monitoring
MonitoringConfiguration

The configuration of the monitoring infrastructure of this cluster

externalClusters
[]ExternalCluster

The list of external clusters which are used in the configuration

logLevel
string

The instances' log level, one of the following values: error, warning, info (default), debug, trace

projectedVolumeTemplate
core/v1.ProjectedVolumeSource

Template to be used to define projected volumes, projected volumes will be mounted under
/projected base folder

env
[]core/v1.EnvVar

Env follows the Env format to pass environment variables to the pods created in the cluster

envFrom
[]core/v1.EnvFromSource

EnvFrom follows the EnvFrom format to pass environment variables sources to the pods to be used by
Env

managed
ManagedConfiguration

The configuration that is used by the portions of PostgreSQL that are managed by the instance
manager

seccompProfile
core/v1.SeccompProfile

The SeccompProfile applied to every Pod and Container. Defaults to: RuntimeDefault

tablespaces
[]TablespaceConfiguration

The tablespaces configuration

enablePDB
bool

Manage the PodDisruptionBudget resources within the cluster. When configured as true
(default setting), the pod disruption budgets will safeguard the primary node from being terminated.
Conversely, setting it to false will result in the absence of any PodDisruptionBudget
resource, permitting the shutdown of all nodes hosting the PostgreSQL cluster. This latter
configuration is advisable for any PostgreSQL cluster employed for development/staging purposes.

plugins
[]PluginConfiguration

The plugins configuration, containing any plugin to be loaded with the corresponding configuration

probes
ProbesConfiguration

The configuration of the probes to be injected in the PostgreSQL Pods.

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 475

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#projectedvolumesource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#envvar-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#envfromsource-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#seccompprofile-v1-core

ClusterStatus

Appears in:Appears in:

Cluster

ClusterStatus defines the observed state of Cluster

Field Description

instances
int

The total number of PVC Groups detected in the cluster. It may differ from the number of existing
instance pods.

readyInstances
int

The total number of ready instances in the cluster. It is equal to the number of ready instance pods.

instancesStatus
map[PodStatus][]string

InstancesStatus indicates in which status the instances are

instancesReportedState
map[PodName]InstanceReportedState

The reported state of the instances during the last reconciliation loop

managedRolesStatus
ManagedRoles

ManagedRolesStatus reports the state of the managed roles in the cluster

tablespacesStatus
[]TablespaceState

TablespacesStatus reports the state of the declarative tablespaces in the cluster

timelineID
int

The timeline of the Postgres cluster

topology
Topology

Instances topology.

latestGeneratedNode
int

ID of the latest generated node (used to avoid node name clashing)

currentPrimary
string

Current primary instance

targetPrimary
string

Target primary instance, this is different from the previous one during a switchover or a failover

lastPromotionToken
string

LastPromotionToken is the last verified promotion token that was used to promote a replica cluster

pvcCount
int32

How many PVCs have been created by this cluster

jobCount
int32

How many Jobs have been created by this cluster

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 476

danglingPVC
[]string

List of all the PVCs created by this cluster and still available which are not attached to a Pod

resizingPVC
[]string

List of all the PVCs that have ResizingPVC condition.

initializingPVC
[]string

List of all the PVCs that are being initialized by this cluster

healthyPVC
[]string

List of all the PVCs not dangling nor initializing

unusablePVC
[]string

List of all the PVCs that are unusable because another PVC is missing

licenseStatus
github.com/EnterpriseDB/cloud-native-
postgres/pkg/licensekey.Status

Status of the license

writeService
string

Current write pod

readService
string

Current list of read pods

phase
string

Current phase of the cluster

phaseReason
string

Reason for the current phase

secretsResourceVersion
SecretsResourceVersion

The list of resource versions of the secrets managed by the operator. Every change here is done in the
interest of the instance manager, which will refresh the secret data

configMapResourceVersion
ConfigMapResourceVersion

The list of resource versions of the configmaps, managed by the operator. Every change here is done in
the interest of the instance manager, which will refresh the configmap data

certificates
CertificatesStatus

The configuration for the CA and related certificates, initialized with defaults.

firstRecoverabilityPoint
string

The first recoverability point, stored as a date in RFC3339 format. This field is calculated from the content
of FirstRecoverabilityPointByMethod

firstRecoverabilityPointByMeth
od
map[BackupMethod]meta/v1.Time

The first recoverability point, stored as a date in RFC3339 format, per backup method type

lastSuccessfulBackup
string

Last successful backup, stored as a date in RFC3339 format This field is calculated from the content of
LastSuccessfulBackupByMethod

lastSuccessfulBackupByMethod
map[BackupMethod]meta/v1.Time

Last successful backup, stored as a date in RFC3339 format, per backup method type

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 477

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta

lastFailedBackup
string

Stored as a date in RFC3339 format

cloudNativePostgresqlCommitHas
h
string

The commit hash number of which this operator running

currentPrimaryTimestamp
string

The timestamp when the last actual promotion to primary has occurred

currentPrimaryFailingSinceTime
stamp
string

The timestamp when the primary was detected to be unhealthy This field is reported when
.spec.failoverDelay is populated or during online upgrades

targetPrimaryTimestamp
string

The timestamp when the last request for a new primary has occurred

poolerIntegrations
PoolerIntegrations

The integration needed by poolers referencing the cluster

cloudNativePostgresqlOperatorH
ash
string

The hash of the binary of the operator

availableArchitectures
[]AvailableArchitecture

AvailableArchitectures reports the available architectures of a cluster

conditions
[]meta/v1.Condition

Conditions for cluster object

instanceNames
[]string

List of instance names in the cluster

onlineUpdateEnabled
bool

OnlineUpdateEnabled shows if the online upgrade is enabled inside the cluster

image
string

Image contains the image name used by the pods

pgDataImageInfo
ImageInfo

PGDataImageInfo contains the details of the latest image that has run on the current data directory.

pluginStatus
[]PluginStatus

PluginStatus is the status of the loaded plugins

switchReplicaClusterStatus
SwitchReplicaClusterStatus

SwitchReplicaClusterStatus is the status of the switch to replica cluster

demotionToken
string

DemotionToken is a JSON token containing the information from pg_controldata such as Database
system identifier, Latest checkpoint's TimeLineID, Latest checkpoint's REDO location, Latest
checkpoint's REDO WAL file, and Time of latest checkpoint

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 478

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#condition-v1-meta

ConfigMapResourceVersion

Appears in:Appears in:

ClusterStatus

ConfigMapResourceVersion is the resource versions of the secrets managed by the operator

Field Description

metrics
map[string]string

A map with the versions of all the config maps used to pass metrics. Map keys are the config map names,
map values are the versions

DataDurabilityLevel

(Alias of string)

Appears in:Appears in:

SynchronousReplicaConfiguration

DataDurabilityLevel specifies how strictly to enforce synchronous replication when cluster instances are unavailable. Options are required or
preferred .

DataSource

Appears in:Appears in:

BootstrapRecovery

DataSource contains the configuration required to bootstrap a PostgreSQL cluster from an existing storage

Field Description

storage [Required][Required]
core/v1.TypedLocalObjectReference

Configuration of the storage of the instances

walStorage
core/v1.TypedLocalObjectReference

Configuration of the storage for PostgreSQL WAL (Write-Ahead Log)

tablespaceStorage
map[string]core/v1.TypedLocalObjectReference

Configuration of the storage for PostgreSQL tablespaces

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 479

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#typedlocalobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#typedlocalobjectreference-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#typedlocalobjectreference-v1-core

DatabaseObjectSpec

Appears in:Appears in:

ExtensionSpec

SchemaSpec

DatabaseObjectSpec contains the fields which are common to every database object

Field Description

name [Required][Required]
string

Name of the extension/schema

ensure
EnsureOption

Specifies whether an extension/schema should be present or absent in the database. If set to present ,
the extension/schema will be created if it does not exist. If set to absent , the extension/schema will be
removed if it exists.

DatabaseObjectStatus

Appears in:Appears in:

DatabaseStatus

DatabaseObjectStatus is the status of the managed database objects

Field Description

name [Required][Required]
string

The name of the object

applied [Required][Required]
bool

True of the object has been installed successfully in the database

message
string

Message is the object reconciliation message

DatabaseReclaimPolicy

(Alias of string)

Appears in:Appears in:

DatabaseSpec

DatabaseReclaimPolicy describes a policy for end-of-life maintenance of databases.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 480

DatabaseRoleRef

Appears in:Appears in:

TablespaceConfiguration

DatabaseRoleRef is a reference an a role available inside PostgreSQL

Field Description

name
string

No description provided.

DatabaseSpec

Appears in:Appears in:

Database

DatabaseSpec is the specification of a Postgresql Database, built around the CREATE DATABASE , ALTER DATABASE , and DROP DATABASE SQL
commands of PostgreSQL.

Field Description

cluster [Required][Required]
core/v1.LocalObjectReference

The name of the PostgreSQL cluster hosting the database.

ensure
EnsureOption

Ensure the PostgreSQL database is present or absent - defaults to "present".

name [Required][Required]
string

The name of the database to create inside PostgreSQL. This setting cannot be changed.

owner [Required][Required]
string

Maps to the OWNER parameter of CREATE DATABASE . Maps to the OWNER TO command of ALTER
DATABASE . The role name of the user who owns the database inside PostgreSQL.

template
string

Maps to the TEMPLATE parameter of CREATE DATABASE . This setting cannot be changed. The name
of the template from which to create this database.

encoding
string

Maps to the ENCODING parameter of CREATE DATABASE . This setting cannot be changed. Character
set encoding to use in the database.

locale
string

Maps to the LOCALE parameter of CREATE DATABASE . This setting cannot be changed. Sets the
default collation order and character classification in the new database.

localeProvider
string

Maps to the LOCALE_PROVIDER parameter of CREATE DATABASE . This setting cannot be changed.
This option sets the locale provider for databases created in the new cluster. Available from PostgreSQL
16.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 481

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#localobjectreference-v1-core

localeCollate
string

Maps to the LC_COLLATE parameter of CREATE DATABASE . This setting cannot be changed.

localeCType
string

Maps to the LC_CTYPE parameter of CREATE DATABASE . This setting cannot be changed.

icuLocale
string

Maps to the ICU_LOCALE parameter of CREATE DATABASE . This setting cannot be changed.
Specifies the ICU locale when the ICU provider is used. This option requires localeProvider to be
set to icu . Available from PostgreSQL 15.

icuRules
string

Maps to the ICU_RULES parameter of CREATE DATABASE . This setting cannot be changed.
Specifies additional collation rules to customize the behavior of the default collation. This option
requires localeProvider to be set to icu . Available from PostgreSQL 16.

builtinLocale
string

Maps to the BUILTIN_LOCALE parameter of CREATE DATABASE . This setting cannot be changed.
Specifies the locale name when the builtin provider is used. This option requires localeProvider to
be set to builtin . Available from PostgreSQL 17.

collationVersion
string

Maps to the COLLATION_VERSION parameter of CREATE DATABASE . This setting cannot be
changed.

isTemplate
bool

Maps to the IS_TEMPLATE parameter of CREATE DATABASE and ALTER DATABASE . If true, this
database is considered a template and can be cloned by any user with CREATEDB privileges.

allowConnections
bool

Maps to the ALLOW_CONNECTIONS parameter of CREATE DATABASE and ALTER DATABASE . If
false then no one can connect to this database.

connectionLimit
int

Maps to the CONNECTION LIMIT clause of CREATE DATABASE and ALTER DATABASE . How
many concurrent connections can be made to this database. -1 (the default) means no limit.

tablespace
string

Maps to the TABLESPACE parameter of CREATE DATABASE . Maps to the SET TABLESPACE
command of ALTER DATABASE . The name of the tablespace (in PostgreSQL) that will be associated
with the new database. This tablespace will be the default tablespace used for objects created in this
database.

databaseReclaimPolicy
DatabaseReclaimPolicy

The policy for end-of-life maintenance of this database.

schemas
[]SchemaSpec

The list of schemas to be managed in the database

extensions
[]ExtensionSpec

The list of extensions to be managed in the database

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 482

DatabaseStatus

Appears in:Appears in:

Database

DatabaseStatus defines the observed state of Database

Field Description

observedGeneration
int64

A sequence number representing the latest desired state that was synchronized

applied
bool

Applied is true if the database was reconciled correctly

message
string

Message is the reconciliation output message

schemas
[]DatabaseObjectStatus

Schemas is the status of the managed schemas

extensions
[]DatabaseObjectStatus

Extensions is the status of the managed extensions

EPASConfiguration

Appears in:Appears in:

PostgresConfiguration

EPASConfiguration contains EDB Postgres Advanced Server specific configurations

Field Description

audit
bool

If true enables edb_audit logging

tde
TDEConfiguration

TDE configuration

EmbeddedObjectMetadata

Appears in:Appears in:

ClusterSpec

EmbeddedObjectMetadata contains metadata to be inherited by all resources related to a Cluster

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 483

Field Description

labels
map[string]string

No description provided.

annotations
map[string]string

No description provided.

EnsureOption

(Alias of string)

Appears in:Appears in:

DatabaseObjectSpec

DatabaseSpec

RoleConfiguration

EnsureOption represents whether we should enforce the presence or absence of a Role in a PostgreSQL instance

EphemeralVolumesSizeLimitConfiguration

Appears in:Appears in:

ClusterSpec

EphemeralVolumesSizeLimitConfiguration contains the configuration of the ephemeral storage

Field Description

shm
k8s.io/apimachinery/pkg/api/resource.Quantity

Shm is the size limit of the shared memory volume

temporaryData
k8s.io/apimachinery/pkg/api/resource.Quantity

TemporaryData is the size limit of the temporary data volume

ExtensionSpec

Appears in:Appears in:

DatabaseSpec

ExtensionSpec configures an extension in a database

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 484

https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity
https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity

DatabaseObjectSpec
DatabaseObjectSpec

(Members of DatabaseObjectSpec are embedded into this type.)

Common fields

version [Required][Required]
string

The version of the extension to install. If empty, the operator will install the default version (whatever is
specified in the extension's control file)

schema [Required][Required]
string

The name of the schema in which to install the extension's objects, in case the extension allows its
contents to be relocated. If not specified (default), and the extension's control file does not specify a
schema either, the current default object creation schema is used.

Field Description

ExternalCluster

Appears in:Appears in:

ClusterSpec

ExternalCluster represents the connection parameters to an external cluster which is used in the other sections of the configuration

Field Description

name [Required][Required]
string

The server name, required

connectionParameters
map[string]string

The list of connection parameters, such as dbname, host, username, etc

sslCert
core/v1.SecretKeySelector

The reference to an SSL certificate to be used to connect to this instance

sslKey
core/v1.SecretKeySelector

The reference to an SSL private key to be used to connect to this instance

sslRootCert
core/v1.SecretKeySelector

The reference to an SSL CA public key to be used to connect to this instance

password
core/v1.SecretKeySelector

The reference to the password to be used to connect to the server. If a password is provided, EDB
Postgres for Kubernetes creates a PostgreSQL passfile at
/controller/external/NAME/pass (where "NAME" is the cluster's name). This passfile is

automatically referenced in the connection string when establishing a connection to the remote
PostgreSQL server from the current PostgreSQL Cluster . This ensures secure and efficient
password management for external clusters.

barmanObjectStore
github.com/cloudnative-pg/barman-
cloud/pkg/api.BarmanObjectStoreConfiguration

The configuration for the barman-cloud tool suite

plugin [Required][Required]
PluginConfiguration

The configuration of the plugin that is taking care of WAL archiving and backups for this external
cluster

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 485

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://pkg.go.dev/github.com/cloudnative-pg/barman-cloud/pkg/api/#BarmanObjectStoreConfiguration

ImageCatalogRef

Appears in:Appears in:

ClusterSpec

ImageCatalogRef defines the reference to a major version in an ImageCatalog

Field Description

TypedLocalObjectReference
core/v1.TypedLocalObjectReference

(Members of TypedLocalObjectReference are embedded into this type.) No description provided.

major [Required][Required]
int

The major version of PostgreSQL we want to use from the ImageCatalog

ImageCatalogSpec

Appears in:Appears in:

ClusterImageCatalog

ImageCatalog

ImageCatalogSpec defines the desired ImageCatalog

Field Description

images [Required][Required]
[]CatalogImage

List of CatalogImages available in the catalog

ImageInfo

Appears in:Appears in:

ClusterStatus

ImageInfo contains the information about a PostgreSQL image

Field Description

image [Required][Required]
string

Image is the image name

majorVersion [Required][Required]
int

MajorVersion is the major version of the image

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 486

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#typedlocalobjectreference-v1-core

Import

Appears in:Appears in:

BootstrapInitDB

Import contains the configuration to init a database from a logic snapshot of an externalCluster

Field Description

source [Required][Required]
ImportSource

The source of the import

type [Required][Required]
SnapshotType

The import type. Can be microservice or monolith .

databases [Required][Required]
[]string

The databases to import

roles
[]string

The roles to import

postImportApplicationSQL
[]string

List of SQL queries to be executed as a superuser in the application database right after is imported - to
be used with extreme care (by default empty). Only available in microservice type.

schemaOnly
bool

When set to true, only the pre-data and post-data sections of pg_restore are invoked,
avoiding data import. Default: false .

pgDumpExtraOptions
[]string

List of custom options to pass to the pg_dump command. IMPORTANT: Use these options with caution
and at your own risk, as the operator does not validate their content. Be aware that certain options may
conflict with the operator's intended functionality or design.

pgRestoreExtraOptions
[]string

List of custom options to pass to the pg_restore command. IMPORTANT: Use these options with
caution and at your own risk, as the operator does not validate their content. Be aware that certain
options may conflict with the operator's intended functionality or design.

ImportSource

Appears in:Appears in:

Import

ImportSource describes the source for the logical snapshot

Field Description

externalCluster
[Required][Required]
string

The name of the externalCluster used for import

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 487

InstanceID

Appears in:Appears in:

BackupStatus

InstanceID contains the information to identify an instance

Field Description

podName
string

The pod name

ContainerID
string

The container ID

InstanceReportedState

Appears in:Appears in:

ClusterStatus

InstanceReportedState describes the last reported state of an instance during a reconciliation loop

Field Description

isPrimary
[Required][Required]
bool

indicates if an instance is the primary one

timeLineID
int

indicates on which TimelineId the instance is

ip [Required][Required]
string

IP address of the instance

LDAPBindAsAuth

Appears in:Appears in:

LDAPConfig

LDAPBindAsAuth provides the required fields to use the bind authentication for LDAP

Field Description

prefix
string

Prefix for the bind authentication option

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 488

suffix
string

Suffix for the bind authentication option

Field Description

LDAPBindSearchAuth

Appears in:Appears in:

LDAPConfig

LDAPBindSearchAuth provides the required fields to use the bind+search LDAP authentication process

Field Description

baseDN
string

Root DN to begin the user search

bindDN
string

DN of the user to bind to the directory

bindPassword
core/v1.SecretKeySelector

Secret with the password for the user to bind to the directory

searchAttribute
string

Attribute to match against the username

searchFilter
string

Search filter to use when doing the search+bind authentication

LDAPConfig

Appears in:Appears in:

PostgresConfiguration

LDAPConfig contains the parameters needed for LDAP authentication

Field Description

server
string

LDAP hostname or IP address

port
int

LDAP server port

scheme
LDAPScheme

LDAP schema to be used, possible options are ldap and ldaps

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 489

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core

bindAsAuth
LDAPBindAsAuth

Bind as authentication configuration

bindSearchAuth
LDAPBindSearchAuth

Bind+Search authentication configuration

tls
bool

Set to 'true' to enable LDAP over TLS. 'false' is default

Field Description

LDAPScheme

(Alias of string)

Appears in:Appears in:

LDAPConfig

LDAPScheme defines the possible schemes for LDAP

ManagedConfiguration

Appears in:Appears in:

ClusterSpec

ManagedConfiguration represents the portions of PostgreSQL that are managed by the instance manager

Field Description

roles
[]RoleConfiguration

Database roles managed by the Cluster

services
ManagedServices

Services roles managed by the Cluster

ManagedRoles

Appears in:Appears in:

ClusterStatus

ManagedRoles tracks the status of a cluster's managed roles

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 490

Field Description

byStatus
map[RoleStatus][]string

ByStatus gives the list of roles in each state

cannotReconcile
map[string][]string

CannotReconcile lists roles that cannot be reconciled in PostgreSQL, with an explanation of the
cause

passwordStatus
map[string]PasswordState

PasswordStatus gives the last transaction id and password secret version for each managed role

ManagedService

Appears in:Appears in:

ManagedServices

ManagedService represents a specific service managed by the cluster. It includes the type of service and its associated template specification.

Field Description

selectorType [Required][Required]
ServiceSelectorType

SelectorType specifies the type of selectors that the service will have. Valid values are "rw", "r", and "ro",
representing read-write, read, and read-only services.

updateStrategy
ServiceUpdateStrategy

UpdateStrategy describes how the service differences should be reconciled

serviceTemplate [Required][Required]
ServiceTemplateSpec

ServiceTemplate is the template specification for the service.

ManagedServices

Appears in:Appears in:

ManagedConfiguration

ManagedServices represents the services managed by the cluster.

Field Description

disabledDefaultServices
[]ServiceSelectorType

DisabledDefaultServices is a list of service types that are disabled by default. Valid values are "r", and
"ro", representing read, and read-only services.

additional
[]ManagedService

Additional is a list of additional managed services specified by the user.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 491

Metadata

Appears in:Appears in:

PodTemplateSpec

ServiceAccountTemplate

ServiceTemplateSpec

Metadata is a structure similar to the metav1.ObjectMeta, but still parseable by controller-gen to create a suitable CRD for the user. The comment of
PodTemplateSpec has an explanation of why we are not using the core data types.

Field Description

name
string

The name of the resource. Only supported for certain types

labels
map[string]string

Map of string keys and values that can be used to organize and categorize (scope and select) objects. May
match selectors of replication controllers and services. More info: http://kubernetes.io/docs/user-
guide/labels

annotations
map[string]string

Annotations is an unstructured key value map stored with a resource that may be set by external tools to
store and retrieve arbitrary metadata. They are not queryable and should be preserved when modifying
objects. More info: http://kubernetes.io/docs/user-guide/annotations

MonitoringConfiguration

Appears in:Appears in:

ClusterSpec

MonitoringConfiguration is the type containing all the monitoring configuration for a certain cluster

Field Description

disableDefaultQueries
bool

Whether the default queries should be injected. Set it to true if you don't want to inject default
queries into the cluster. Default: false.

customQueriesConfigMap
[]github.com/cloudnative-
pg/machinery/pkg/api.ConfigMapKeySelector

The list of config maps containing the custom queries

customQueriesSecret
[]github.com/cloudnative-
pg/machinery/pkg/api.SecretKeySelector

The list of secrets containing the custom queries

enablePodMonitor
bool

Enable or disable the PodMonitor

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 492

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#ConfigMapKeySelector
https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#SecretKeySelector

tls
ClusterMonitoringTLSConfiguration

Configure TLS communication for the metrics endpoint. Changing tls.enabled option will force a
rollout of all instances.

podMonitorMetricRelabelings
[]github.com/prometheus-
operator/prometheus-
operator/pkg/apis/monitoring/v1.RelabelConfig

The list of metric relabelings for the PodMonitor . Applied to samples before ingestion.

podMonitorRelabelings
[]github.com/prometheus-
operator/prometheus-
operator/pkg/apis/monitoring/v1.RelabelConfig

The list of relabelings for the PodMonitor . Applied to samples before scraping.

Field Description

NodeMaintenanceWindow

Appears in:Appears in:

ClusterSpec

NodeMaintenanceWindow contains information that the operator will use while upgrading the underlying node.

This option is only useful when the chosen storage prevents the Pods from being freely moved across nodes.

Field Description

reusePVC
bool

Reuse the existing PVC (wait for the node to come up again) or not (recreate it elsewhere - when
instances >1)

inProgress
bool

Is there a node maintenance activity in progress?

OnlineConfiguration

Appears in:Appears in:

BackupSpec

ScheduledBackupSpec

VolumeSnapshotConfiguration

OnlineConfiguration contains the configuration parameters for the online volume snapshot

Field Description

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 493

https://pkg.go.dev/github.com/prometheus-operator/prometheus-operator/pkg/apis/monitoring/v1#RelabelConfig
https://pkg.go.dev/github.com/prometheus-operator/prometheus-operator/pkg/apis/monitoring/v1#RelabelConfig

waitForArchive
bool

If false, the function will return immediately after the backup is completed, without waiting for WAL to be
archived. This behavior is only useful with backup software that independently monitors WAL archiving.
Otherwise, WAL required to make the backup consistent might be missing and make the backup useless.
By default, or when this parameter is true, pg_backup_stop will wait for WAL to be archived when
archiving is enabled. On a standby, this means that it will wait only when archive_mode = always. If write
activity on the primary is low, it may be useful to run pg_switch_wal on the primary in order to trigger an
immediate segment switch.

immediateCheckpoint
bool

Control whether the I/O workload for the backup initial checkpoint will be limited, according to the
checkpoint_completion_target setting on the PostgreSQL server. If set to true, an immediate

checkpoint will be used, meaning PostgreSQL will complete the checkpoint as soon as possible. false
by default.

Field Description

PasswordState

Appears in:Appears in:

ManagedRoles

PasswordState represents the state of the password of a managed RoleConfiguration

Field Description

transactionID
int64

the last transaction ID to affect the role definition in PostgreSQL

resourceVersion
string

the resource version of the password secret

PgBouncerIntegrationStatus

Appears in:Appears in:

PoolerIntegrations

PgBouncerIntegrationStatus encapsulates the needed integration for the pgbouncer poolers referencing the cluster

Field Description

secrets
[]string

No description provided.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 494

PgBouncerPoolMode

(Alias of string)

Appears in:Appears in:

PgBouncerSpec

PgBouncerPoolMode is the mode of PgBouncer

PgBouncerSecrets

Appears in:Appears in:

PoolerSecrets

PgBouncerSecrets contains the versions of the secrets used by pgbouncer

Field Description

authQuery
SecretVersion

The auth query secret version

PgBouncerSpec

Appears in:Appears in:

PoolerSpec

PgBouncerSpec defines how to configure PgBouncer

Field Description

poolMode
PgBouncerPoolMode

The pool mode. Default: session .

authQuerySecret
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

The credentials of the user that need to be used for the authentication query. In case it is specified,
also an AuthQuery (e.g. "SELECT usename, passwd FROM pg_catalog.pg_shadow WHERE
usename=$1") has to be specified and no automatic CNP Cluster integration will be triggered.

authQuery
string

The query that will be used to download the hash of the password of a certain user. Default: "SELECT
usename, passwd FROM public.user_search($1)". In case it is specified, also an AuthQuerySecret has
to be specified and no automatic CNP Cluster integration will be triggered.

parameters
map[string]string

Additional parameters to be passed to PgBouncer - please check the CNP documentation for a list of
options you can configure

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 495

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference

pg_hba
[]string

PostgreSQL Host Based Authentication rules (lines to be appended to the pg_hba.conf file)

paused
bool

When set to true , PgBouncer will disconnect from the PostgreSQL server, first waiting for all
queries to complete, and pause all new client connections until this value is set to false (default).
Internally, the operator calls PgBouncer's PAUSE and RESUME commands.

Field Description

PluginConfiguration

Appears in:Appears in:

ClusterSpec

ExternalCluster

PluginConfiguration specifies a plugin that need to be loaded for this cluster to be reconciled

Field Description

name [Required][Required]
string

Name is the plugin name

enabled
bool

Enabled is true if this plugin will be used

isWALArchiver
bool

Only one plugin can be declared as WALArchiver. Cannot be active if ".spec.backup.barmanObjectStore"
configuration is present.

parameters
map[string]string

Parameters is the configuration of the plugin

PluginStatus

Appears in:Appears in:

ClusterStatus

PluginStatus is the status of a loaded plugin

Field Description

name [Required][Required]
string

Name is the name of the plugin

version [Required][Required]
string

Version is the version of the plugin loaded by the latest reconciliation loop

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 496

capabilities
[]string

Capabilities are the list of capabilities of the plugin

operatorCapabilities
[]string

OperatorCapabilities are the list of capabilities of the plugin regarding the reconciler

walCapabilities
[]string

WALCapabilities are the list of capabilities of the plugin regarding the WAL management

backupCapabilities
[]string

BackupCapabilities are the list of capabilities of the plugin regarding the Backup management

restoreJobHookCapabilities
[]string

RestoreJobHookCapabilities are the list of capabilities of the plugin regarding the RestoreJobHook
management

status
string

Status contain the status reported by the plugin through the SetStatusInCluster interface

Field Description

PodTemplateSpec

Appears in:Appears in:

PoolerSpec

PodTemplateSpec is a structure allowing the user to set a template for Pod generation.

Unfortunately we can't use the corev1.PodTemplateSpec type because the generated CRD won't have the field for the metadata section.

References: https://github.com/kubernetes-sigs/controller-tools/issues/385 https://github.com/kubernetes-sigs/controller-tools/issues/448
https://github.com/prometheus-operator/prometheus-operator/issues/3041

Field Description

metadata
Metadata

Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

spec
core/v1.PodSpec

Specification of the desired behavior of the pod. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

PodTopologyLabels

(Alias of map[string]string)

Appears in:Appears in:

Topology

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 497

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#podspec-v1-core

PodTopologyLabels represent the topology of a Pod. map[labelName]labelValue

PoolerIntegrations

Appears in:Appears in:

ClusterStatus

PoolerIntegrations encapsulates the needed integration for the poolers referencing the cluster

Field Description

pgBouncerIntegration
PgBouncerIntegrationStatus

No description provided.

PoolerMonitoringConfiguration

Appears in:Appears in:

PoolerSpec

PoolerMonitoringConfiguration is the type containing all the monitoring configuration for a certain Pooler.

Mirrors the Cluster's MonitoringConfiguration but without the custom queries part for now.

Field Description

enablePodMonitor
bool

Enable or disable the PodMonitor

podMonitorMetricRelabelings
[]github.com/prometheus-
operator/prometheus-
operator/pkg/apis/monitoring/v1.RelabelConfig

The list of metric relabelings for the PodMonitor . Applied to samples before ingestion.

podMonitorRelabelings
[]github.com/prometheus-
operator/prometheus-
operator/pkg/apis/monitoring/v1.RelabelConfig

The list of relabelings for the PodMonitor . Applied to samples before scraping.

PoolerSecrets

Appears in:Appears in:

PoolerStatus

PoolerSecrets contains the versions of all the secrets used

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 498

https://pkg.go.dev/github.com/prometheus-operator/prometheus-operator/pkg/apis/monitoring/v1#RelabelConfig
https://pkg.go.dev/github.com/prometheus-operator/prometheus-operator/pkg/apis/monitoring/v1#RelabelConfig

Field Description

serverTLS
SecretVersion

The server TLS secret version

serverCA
SecretVersion

The server CA secret version

clientCA
SecretVersion

The client CA secret version

pgBouncerSecrets
PgBouncerSecrets

The version of the secrets used by PgBouncer

PoolerSpec

Appears in:Appears in:

Pooler

PoolerSpec defines the desired state of Pooler

Field Description

cluster [Required][Required]
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

This is the cluster reference on which the Pooler will work. Pooler name should never match with any
cluster name within the same namespace.

type
PoolerType

Type of service to forward traffic to. Default: rw .

instances
int32

The number of replicas we want. Default: 1.

template
PodTemplateSpec

The template of the Pod to be created

pgbouncer [Required][Required]
PgBouncerSpec

The PgBouncer configuration

deploymentStrategy
apps/v1.DeploymentStrategy

The deployment strategy to use for pgbouncer to replace existing pods with new ones

monitoring
PoolerMonitoringConfiguration

The configuration of the monitoring infrastructure of this pooler.

serviceTemplate
ServiceTemplateSpec

Template for the Service to be created

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 499

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#deploymentstrategy-v1-apps

PoolerStatus

Appears in:Appears in:

Pooler

PoolerStatus defines the observed state of Pooler

Field Description

secrets
PoolerSecrets

The resource version of the config object

instances
int32

The number of pods trying to be
scheduled

PoolerType

(Alias of string)

Appears in:Appears in:

PoolerSpec

PoolerType is the type of the connection pool, meaning the service we are targeting. Allowed values are rw and ro .

PostgresConfiguration

Appears in:Appears in:

ClusterSpec

PostgresConfiguration defines the PostgreSQL configuration

Field Description

parameters
map[string]string

PostgreSQL configuration options (postgresql.conf)

synchronous
SynchronousReplicaConfiguration

Configuration of the PostgreSQL synchronous replication feature

pg_hba
[]string

PostgreSQL Host Based Authentication rules (lines to be appended to the pg_hba.conf file)

pg_ident
[]string

PostgreSQL User Name Maps rules (lines to be appended to the pg_ident.conf file)

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 500

epas
EPASConfiguration

EDB Postgres Advanced Server specific configurations

syncReplicaElectionConstraint
SyncReplicaElectionConstraints

Requirements to be met by sync replicas. This will affect how the "synchronous_standby_names"
parameter will be set up.

shared_preload_libraries
[]string

Lists of shared preload libraries to add to the default ones

ldap
LDAPConfig

Options to specify LDAP configuration

promotionTimeout
int32

Specifies the maximum number of seconds to wait when promoting an instance to primary. Default value
is 40000000, greater than one year in seconds, big enough to simulate an infinite timeout

enableAlterSystem
bool

If this parameter is true, the user will be able to invoke ALTER SYSTEM on this EDB Postgres for
Kubernetes Cluster. This should only be used for debugging and troubleshooting. Defaults to false.

Field Description

PrimaryUpdateMethod

(Alias of string)

Appears in:Appears in:

ClusterSpec

PrimaryUpdateMethod contains the method to use when upgrading the primary server of the cluster as part of rolling updates

PrimaryUpdateStrategy

(Alias of string)

Appears in:Appears in:

ClusterSpec

PrimaryUpdateStrategy contains the strategy to follow when upgrading the primary server of the cluster as part of rolling updates

Probe

Appears in:Appears in:

ProbeWithStrategy

ProbesConfiguration

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 501

Probe describes a health check to be performed against a container to determine whether it is alive or ready to receive traffic.

Field Description

initialDelaySeconds
int32

Number of seconds after the container has started before liveness probes are initiated. More info:
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

timeoutSeconds
int32

Number of seconds after which the probe times out. Defaults to 1 second. Minimum value is 1. More info:
https://kubernetes.io/docs/concepts/workloads/pods/pod-lifecycle#container-probes

periodSeconds
int32

How often (in seconds) to perform the probe. Default to 10 seconds. Minimum value is 1.

successThreshold
int32

Minimum consecutive successes for the probe to be considered successful after having failed. Defaults to
1. Must be 1 for liveness and startup. Minimum value is 1.

failureThreshold
int32

Minimum consecutive failures for the probe to be considered failed after having succeeded. Defaults to 3.
Minimum value is 1.

terminationGracePeriodSeconds
int64

Optional duration in seconds the pod needs to terminate gracefully upon probe failure. The grace period
is the duration in seconds after the processes running in the pod are sent a termination signal and the
time when the processes are forcibly halted with a kill signal. Set this value longer than the expected
cleanup time for your process. If this value is nil, the pod's terminationGracePeriodSeconds will be used.
Otherwise, this value overrides the value provided by the pod spec. Value must be non-negative integer.
The value zero indicates stop immediately via the kill signal (no opportunity to shut down). This is a beta
field and requires enabling ProbeTerminationGracePeriod feature gate. Minimum value is 1.
spec.terminationGracePeriodSeconds is used if unset.

ProbeStrategyType

(Alias of string)

Appears in:Appears in:

ProbeWithStrategy

ProbeStrategyType is the type of the strategy used to declare a PostgreSQL instance ready

ProbeWithStrategy

Appears in:Appears in:

ProbesConfiguration

ProbeWithStrategy is the configuration of the startup probe

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 502

Field Description

Probe
Probe

(Members of Probe are embedded into this type.)

Probe is the standard probe configuration

type
ProbeStrategyType

The probe strategy

maximumLag
k8s.io/apimachinery/pkg/api/resource.Quantity

Lag limit. Used only for streaming strategy

ProbesConfiguration

Appears in:Appears in:

ClusterSpec

ProbesConfiguration represent the configuration for the probes to be injected in the PostgreSQL Pods

Field Description

startup [Required][Required]
ProbeWithStrategy

The startup probe configuration

liveness [Required][Required]
Probe

The liveness probe configuration

readiness
[Required][Required]
ProbeWithStrategy

The readiness probe configuration

PublicationReclaimPolicy

(Alias of string)

Appears in:Appears in:

PublicationSpec

PublicationReclaimPolicy defines a policy for end-of-life maintenance of Publications.

PublicationSpec

Appears in:Appears in:

Publication

PublicationSpec defines the desired state of Publication

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 503

https://pkg.go.dev/k8s.io/apimachinery/pkg/api/resource#Quantity

Field Description

cluster [Required][Required]
core/v1.LocalObjectReference

The name of the PostgreSQL cluster that identifies the "publisher"

name [Required][Required]
string

The name of the publication inside PostgreSQL

dbname [Required][Required]
string

The name of the database where the publication will be installed in the "publisher" cluster

parameters
map[string]string

Publication parameters part of the WITH clause as expected by PostgreSQL CREATE PUBLICATION
command

target [Required][Required]
PublicationTarget

Target of the publication as expected by PostgreSQL CREATE PUBLICATION command

publicationReclaimPolicy
PublicationReclaimPolicy

The policy for end-of-life maintenance of this publication

PublicationStatus

Appears in:Appears in:

Publication

PublicationStatus defines the observed state of Publication

Field Description

observedGeneration
int64

A sequence number representing the latest desired state that was synchronized

applied
bool

Applied is true if the publication was reconciled correctly

message
string

Message is the reconciliation output message

PublicationTarget

Appears in:Appears in:

PublicationSpec

PublicationTarget is what this publication should publish

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 504

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#localobjectreference-v1-core

Field Description

allTables
bool

Marks the publication as one that replicates changes for all tables in the database, including tables
created in the future. Corresponding to FOR ALL TABLES in PostgreSQL.

objects
[]PublicationTargetObject

Just the following schema objects

PublicationTargetObject

Appears in:Appears in:

PublicationTarget

PublicationTargetObject is an object to publish

Field Description

tablesInSchema
string

Marks the publication as one that replicates changes for all tables in the specified list of schemas,
including tables created in the future. Corresponding to FOR TABLES IN SCHEMA in PostgreSQL.

table
PublicationTargetTable

Specifies a list of tables to add to the publication. Corresponding to FOR TABLE in PostgreSQL.

PublicationTargetTable

Appears in:Appears in:

PublicationTargetObject

PublicationTargetTable is a table to publish

Field Description

only
bool

Whether to limit to the table only or include all its
descendants

name [Required][Required]
string

The table name

schema
string

The schema name

columns
[]string

The columns to publish

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 505

RecoveryTarget

Appears in:Appears in:

BootstrapRecovery

RecoveryTarget allows to configure the moment where the recovery process will stop. All the target options except TargetTLI are mutually exclusive.

Field Description

backupID
string

The ID of the backup from which to start the recovery process. If empty (default) the operator will
automatically detect the backup based on targetTime or targetLSN if specified. Otherwise use the latest
available backup in chronological order.

targetTLI
string

The target timeline ("latest" or a positive integer)

targetXID
string

The target transaction ID

targetName
string

The target name (to be previously created with pg_create_restore_point)

targetLSN
string

The target LSN (Log Sequence Number)

targetTime
string

The target time as a timestamp in the RFC3339 standard

targetImmediate
bool

End recovery as soon as a consistent state is reached

exclusive
bool

Set the target to be exclusive. If omitted, defaults to false, so that in Postgres,
recovery_target_inclusive will be true

ReplicaClusterConfiguration

Appears in:Appears in:

ClusterSpec

ReplicaClusterConfiguration encapsulates the configuration of a replica cluster

Field Description

self
string

Self defines the name of this cluster. It is used to determine if this is a primary or a replica cluster,
comparing it with primary

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 506

primary
string

Primary defines which Cluster is defined to be the primary in the distributed PostgreSQL cluster, based
on the topology specified in externalClusters

source [Required][Required]
string

The name of the external cluster which is the replication origin

enabled
bool

If replica mode is enabled, this cluster will be a replica of an existing cluster. Replica cluster can be
created from a recovery object store or via streaming through pg_basebackup. Refer to the Replica
clusters page of the documentation for more information.

promotionToken
string

A demotion token generated by an external cluster used to check if the promotion requirements are met.

minApplyDelay
meta/v1.Duration

When replica mode is enabled, this parameter allows you to replay transactions only when the system
time is at least the configured time past the commit time. This provides an opportunity to correct data
loss errors. Note that when this parameter is set, a promotion token cannot be used.

Field Description

ReplicationSlotsConfiguration

Appears in:Appears in:

ClusterSpec

ReplicationSlotsConfiguration encapsulates the configuration of replication slots

Field Description

highAvailability
ReplicationSlotsHAConfiguration

Replication slots for high availability configuration

updateInterval
int

Standby will update the status of the local replication slots every updateInterval seconds (default
30).

synchronizeReplicas
SynchronizeReplicasConfiguration

Configures the synchronization of the user defined physical replication slots

ReplicationSlotsHAConfiguration

Appears in:Appears in:

ReplicationSlotsConfiguration

ReplicationSlotsHAConfiguration encapsulates the configuration of the replication slots that are automatically managed by the operator to control the
streaming replication connections with the standby instances for high availability (HA) purposes. Replication slots are a PostgreSQL feature that makes
sure that PostgreSQL automatically keeps WAL files in the primary when a streaming client (in this specific case a replica that is part of the HA cluster) gets
disconnected.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 507

https://pkg.go.dev/k8s.io/apimachinery/pkg/apis/meta/v1#Duration

Field Description

enabled
bool

If enabled (default), the operator will automatically manage replication slots on the primary instance and
use them in streaming replication connections with all the standby instances that are part of the HA
cluster. If disabled, the operator will not take advantage of replication slots in streaming connections
with the replicas. This feature also controls replication slots in replica cluster, from the designated
primary to its cascading replicas.

slotPrefix
string

Prefix for replication slots managed by the operator for HA. It may only contain lower case letters,
numbers, and the underscore character. This can only be set at creation time. By default set to _cnp_ .

RoleConfiguration

Appears in:Appears in:

ManagedConfiguration

RoleConfiguration is the representation, in Kubernetes, of a PostgreSQL role with the additional field Ensure specifying whether to ensure the presence or
absence of the role in the database

The defaults of the CREATE ROLE command are applied Reference: https://www.postgresql.org/docs/current/sql-createrole.html

Field Description

name [Required][Required]
string

Name of the role

comment
string

Description of the role

ensure
EnsureOption

Ensure the role is present or absent - defaults to "present"

passwordSecret
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

Secret containing the password of the role (if present) If null, the password will be ignored unless
DisablePassword is set

connectionLimit
int64

If the role can log in, this specifies how many concurrent connections the role can make. -1 (the
default) means no limit.

validUntil
meta/v1.Time

Date and time after which the role's password is no longer valid. When omitted, the password will
never expire (default).

inRoles
[]string

List of one or more existing roles to which this role will be immediately added as a new member.
Default empty.

inherit
bool

Whether a role "inherits" the privileges of roles it is a member of. Defaults is true .

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 508

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta

disablePassword
bool

DisablePassword indicates that a role's password should be set to NULL in Postgres

superuser
bool

Whether the role is a superuser who can override all access restrictions within the database -
superuser status is dangerous and should be used only when really needed. You must yourself be a
superuser to create a new superuser. Defaults is false .

createdb
bool

When set to true , the role being defined will be allowed to create new databases. Specifying
false (default) will deny a role the ability to create databases.

createrole
bool

Whether the role will be permitted to create, alter, drop, comment on, change the security label for,
and grant or revoke membership in other roles. Default is false .

login
bool

Whether the role is allowed to log in. A role having the login attribute can be thought of as a user.
Roles without this attribute are useful for managing database privileges, but are not users in the usual
sense of the word. Default is false .

replication
bool

Whether a role is a replication role. A role must have this attribute (or be a superuser) in order to be
able to connect to the server in replication mode (physical or logical replication) and in order to be able
to create or drop replication slots. A role having the replication attribute is a very highly
privileged role, and should only be used on roles actually used for replication. Default is false .

bypassrls
bool

Whether a role bypasses every row-level security (RLS) policy. Default is false .

Field Description

SQLRefs

Appears in:Appears in:

BootstrapInitDB

SQLRefs holds references to ConfigMaps or Secrets containing SQL files. The references are processed in a specific order: first, all Secrets are processed,
followed by all ConfigMaps. Within each group, the processing order follows the sequence specified in their respective arrays.

Field Description

secretRefs
[]github.com/cloudnative-
pg/machinery/pkg/api.SecretKeySelector

SecretRefs holds a list of references to Secrets

configMapRefs
[]github.com/cloudnative-
pg/machinery/pkg/api.ConfigMapKeySelector

ConfigMapRefs holds a list of references to ConfigMaps

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 509

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#SecretKeySelector
https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#ConfigMapKeySelector

ScheduledBackupSpec

Appears in:Appears in:

ScheduledBackup

ScheduledBackupSpec defines the desired state of ScheduledBackup

Field Description

suspend
bool

If this backup is suspended or not

immediate
bool

If the first backup has to be immediately start after creation or not

schedule [Required][Required]
string

The schedule does not follow the same format used in Kubernetes CronJobs as it includes an
additional seconds specifier, see https://pkg.go.dev/github.com/robfig/cron#hdr-
CRON_Expression_Format

cluster [Required][Required]
github.com/cloudnative-
pg/machinery/pkg/api.LocalObjectReference

The cluster to backup

backupOwnerReference
string

Indicates which ownerReference should be put inside the created backup resources.

none: no owner reference for created backup objects (same behavior as before the field was
introduced)
self: sets the Scheduled backup object as owner of the backup
cluster: set the cluster as owner of the backup

target
BackupTarget

The policy to decide which instance should perform this backup. If empty, it defaults to
cluster.spec.backup.target . Available options are empty string, primary and prefer-
standby . primary to have backups run always on primary instances, prefer-standby to
have backups run preferably on the most updated standby, if available.

method
BackupMethod

The backup method to be used, possible options are barmanObjectStore , volumeSnapshot
or plugin . Defaults to: barmanObjectStore .

pluginConfiguration
BackupPluginConfiguration

Configuration parameters passed to the plugin managing this backup

online
bool

Whether the default type of backup with volume snapshots is online/hot (true , default) or
offline/cold (false) Overrides the default setting specified in the cluster field
'.spec.backup.volumeSnapshot.online'

onlineConfiguration
OnlineConfiguration

Configuration parameters to control the online/hot backup with volume snapshots Overrides the
default settings specified in the cluster '.backup.volumeSnapshot.onlineConfiguration' stanza

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 510

https://pkg.go.dev/github.com/cloudnative-pg/machinery/pkg/api/#LocalObjectReference

ScheduledBackupStatus

Appears in:Appears in:

ScheduledBackup

ScheduledBackupStatus defines the observed state of ScheduledBackup

Field Description

lastCheckTime
meta/v1.Time

The latest time the schedule

lastScheduleTime
meta/v1.Time

Information when was the last time that backup was successfully scheduled.

nextScheduleTime
meta/v1.Time

Next time we will run a backup

SchemaSpec

Appears in:Appears in:

DatabaseSpec

SchemaSpec configures a schema in a database

Field Description

DatabaseObjectSpec
DatabaseObjectSpec

(Members of DatabaseObjectSpec are embedded into this type.)

Common fields

owner [Required][Required]
string

The role name of the user who owns the schema inside PostgreSQL. It maps to the AUTHORIZATION
parameter of CREATE SCHEMA and the OWNER TO command of ALTER SCHEMA .

SecretVersion

Appears in:Appears in:

PgBouncerSecrets

PoolerSecrets

SecretVersion contains a secret name and its ResourceVersion

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 511

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#time-v1-meta

Field Description

name
string

The name of the secret

version
string

The ResourceVersion of the secret

SecretsResourceVersion

Appears in:Appears in:

ClusterStatus

SecretsResourceVersion is the resource versions of the secrets managed by the operator

Field Description

superuserSecretVersion
string

The resource version of the "postgres" user secret

replicationSecretVersion
string

The resource version of the "streaming_replica" user secret

applicationSecretVersion
string

The resource version of the "app" user secret

managedRoleSecretVersion
map[string]string

The resource versions of the managed roles secrets

caSecretVersion
string

Unused. Retained for compatibility with old versions.

clientCaSecretVersion
string

The resource version of the PostgreSQL client-side CA secret version

serverCaSecretVersion
string

The resource version of the PostgreSQL server-side CA secret version

serverSecretVersion
string

The resource version of the PostgreSQL server-side secret version

barmanEndpointCA
string

The resource version of the Barman Endpoint CA if provided

externalClusterSecretVersion
map[string]string

The resource versions of the external cluster secrets

metrics
map[string]string

A map with the versions of all the secrets used to pass metrics. Map keys are the secret names, map
values are the versions

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 512

ServiceAccountTemplate

Appears in:Appears in:

ClusterSpec

ServiceAccountTemplate contains the template needed to generate the service accounts

Field Description

metadata [Required][Required]
Metadata

Metadata are the metadata to be used for the generated service account

ServiceSelectorType

(Alias of string)

Appears in:Appears in:

ManagedService

ManagedServices

ServiceSelectorType describes a valid value for generating the service selectors. It indicates which type of service the selector applies to, such as read-
write, read, or read-only

ServiceTemplateSpec

Appears in:Appears in:

ManagedService

PoolerSpec

ServiceTemplateSpec is a structure allowing the user to set a template for Service generation.

Field Description

metadata
Metadata

Standard object's metadata. More info: https://git.k8s.io/community/contributors/devel/sig-
architecture/api-conventions.md#metadata

spec
core/v1.ServiceSpec

Specification of the desired behavior of the service. More info:
https://git.k8s.io/community/contributors/devel/sig-architecture/api-conventions.md#spec-and-status

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 513

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#servicespec-v1-core

ServiceUpdateStrategy

(Alias of string)

Appears in:Appears in:

ManagedService

ServiceUpdateStrategy describes how the changes to the managed service should be handled

SnapshotOwnerReference

(Alias of string)

Appears in:Appears in:

VolumeSnapshotConfiguration

SnapshotOwnerReference defines the reference type for the owner of the snapshot. This specifies which owner the processed resources should relate to.

SnapshotType

(Alias of string)

Appears in:Appears in:

Import

SnapshotType is a type of allowed import

StorageConfiguration

Appears in:Appears in:

ClusterSpec

TablespaceConfiguration

StorageConfiguration is the configuration used to create and reconcile PVCs, usable for WAL volumes, PGDATA volumes, or tablespaces

Field Description

storageClass
string

StorageClass to use for PVCs. Applied after evaluating the PVC template, if available. If not specified, the
generated PVCs will use the default storage class

size
string

Size of the storage. Required if not already specified in the PVC template. Changes to this field are
automatically reapplied to the created PVCs. Size cannot be decreased.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 514

resizeInUseVolumes
bool

Resize existent PVCs, defaults to true

pvcTemplate
core/v1.PersistentVolumeClaimSpec

Template to be used to generate the Persistent Volume Claim

Field Description

SubscriptionReclaimPolicy

(Alias of string)

Appears in:Appears in:

SubscriptionSpec

SubscriptionReclaimPolicy describes a policy for end-of-life maintenance of Subscriptions.

SubscriptionSpec

Appears in:Appears in:

Subscription

SubscriptionSpec defines the desired state of Subscription

Field Description

cluster [Required][Required]
core/v1.LocalObjectReference

The name of the PostgreSQL cluster that identifies the "subscriber"

name [Required][Required]
string

The name of the subscription inside PostgreSQL

dbname [Required][Required]
string

The name of the database where the publication will be installed in the "subscriber" cluster

parameters
map[string]string

Subscription parameters part of the WITH clause as expected by PostgreSQL CREATE
SUBSCRIPTION command

publicationName [Required][Required]
string

The name of the publication inside the PostgreSQL database in the "publisher"

publicationDBName
string

The name of the database containing the publication on the external cluster. Defaults to the one in the
external cluster definition.

externalClusterName [Required][Required]
string

The name of the external cluster with the publication ("publisher")

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 515

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#persistentvolumeclaimspec-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#localobjectreference-v1-core

subscriptionReclaimPolicy
SubscriptionReclaimPolicy

The policy for end-of-life maintenance of this subscription

Field Description

SubscriptionStatus

Appears in:Appears in:

Subscription

SubscriptionStatus defines the observed state of Subscription

Field Description

observedGeneration
int64

A sequence number representing the latest desired state that was synchronized

applied
bool

Applied is true if the subscription was reconciled correctly

message
string

Message is the reconciliation output message

SwitchReplicaClusterStatus

Appears in:Appears in:

ClusterStatus

SwitchReplicaClusterStatus contains all the statuses regarding the switch of a cluster to a replica cluster

Field Description

inProgress
bool

InProgress indicates if there is an ongoing procedure of switching a cluster to a replica
cluster.

SyncReplicaElectionConstraints

Appears in:Appears in:

PostgresConfiguration

SyncReplicaElectionConstraints contains the constraints for sync replicas election.

For anti-affinity parameters two instances are considered in the same location if all the labels values match.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 516

In future synchronous replica election restriction by name will be supported.

Field Description

nodeLabelsAntiAffinity
[]string

A list of node labels values to extract and compare to evaluate if the pods reside in the same topology or
not

enabled [Required][Required]
bool

This flag enables the constraints for sync replicas

SynchronizeReplicasConfiguration

Appears in:Appears in:

ReplicationSlotsConfiguration

SynchronizeReplicasConfiguration contains the configuration for the synchronization of user defined physical replication slots

Field Description

enabled [Required][Required]
bool

When set to true, every replication slot that is on the primary is synchronized on each standby

excludePatterns
[]string

List of regular expression patterns to match the names of replication slots to be excluded (by default
empty)

SynchronousReplicaConfiguration

Appears in:Appears in:

PostgresConfiguration

SynchronousReplicaConfiguration contains the configuration of the PostgreSQL synchronous replication feature. Important: at this moment, also
.spec.minSyncReplicas and .spec.maxSyncReplicas need to be considered.

Field Description

method [Required][Required]
SynchronousReplicaConfigurationMethod

Method to select synchronous replication standbys from the listed servers, accepting 'any' (quorum-
based synchronous replication) or 'first' (priority-based synchronous replication) as values.

number [Required][Required]
int

Specifies the number of synchronous standby servers that transactions must wait for responses from.

maxStandbyNamesFromCluster
int

Specifies the maximum number of local cluster pods that can be automatically included in the
synchronous_standby_names option in PostgreSQL.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 517

standbyNamesPre
[]string

A user-defined list of application names to be added to synchronous_standby_names before local
cluster pods (the order is only useful for priority-based synchronous replication).

standbyNamesPost
[]string

A user-defined list of application names to be added to synchronous_standby_names after local
cluster pods (the order is only useful for priority-based synchronous replication).

dataDurability
DataDurabilityLevel

If set to "required", data durability is strictly enforced. Write operations with synchronous commit
settings (on , remote_write , or remote_apply) will block if there are insufficient healthy
replicas, ensuring data persistence. If set to "preferred", data durability is maintained when healthy
replicas are available, but the required number of instances will adjust dynamically if replicas become
unavailable. This setting relaxes strict durability enforcement to allow for operational continuity. This
setting is only applicable if both standbyNamesPre and standbyNamesPost are unset (empty).

Field Description

SynchronousReplicaConfigurationMethod

(Alias of string)

Appears in:Appears in:

SynchronousReplicaConfiguration

SynchronousReplicaConfigurationMethod configures whether to use quorum based replication or a priority list

TDEConfiguration

Appears in:Appears in:

EPASConfiguration

TDEConfiguration contains the Transparent Data Encryption configuration

Field Description

enabled
bool

True if we want to have TDE enabled

secretKeyRef
core/v1.SecretKeySelector

Reference to the secret that contains the encryption key

wrapCommand
core/v1.SecretKeySelector

WrapCommand is the encrypt command provided by the user

unwrapCommand
core/v1.SecretKeySelector

UnwrapCommand is the decryption command provided by the user

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 518

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core
https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core

passphraseCommand
core/v1.SecretKeySelector

PassphraseCommand is the command executed to get the passphrase that will be passed to the OpenSSL
command to encrypt and decrypt

Field Description

TablespaceConfiguration

Appears in:Appears in:

ClusterSpec

TablespaceConfiguration is the configuration of a tablespace, and includes the storage specification for the tablespace

Field Description

name [Required][Required]
string

The name of the tablespace

storage [Required][Required]
StorageConfiguration

The storage configuration for the tablespace

owner
DatabaseRoleRef

Owner is the PostgreSQL user owning the tablespace

temporary
bool

When set to true, the tablespace will be added as a temp_tablespaces entry in PostgreSQL, and will
be available to automatically house temp database objects, or other temporary files. Please refer to
PostgreSQL documentation for more information on the temp_tablespaces GUC.

TablespaceState

Appears in:Appears in:

ClusterStatus

TablespaceState represents the state of a tablespace in a cluster

Field Description

name [Required][Required]
string

Name is the name of the tablespace

owner
string

Owner is the PostgreSQL user owning the tablespace

state [Required][Required]
TablespaceStatus

State is the latest reconciliation state

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 519

https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.28/#secretkeyselector-v1-core

error
string

Error is the reconciliation error, if any

Field Description

TablespaceStatus

(Alias of string)

Appears in:Appears in:

TablespaceState

TablespaceStatus represents the status of a tablespace in the cluster

Topology

Appears in:Appears in:

ClusterStatus

Topology contains the cluster topology

Field Description

instances
map[PodName]PodTopologyLabels

Instances contains the pod topology of the instances

nodesUsed
int32

NodesUsed represents the count of distinct nodes accommodating the instances. A value of '1' suggests
that all instances are hosted on a single node, implying the absence of High Availability (HA). Ideally, this
value should be the same as the number of instances in the Postgres HA cluster, implying shared nothing
architecture on the compute side.

successfullyExtracted
bool

SuccessfullyExtracted indicates if the topology data was extract. It is useful to enact fallback behaviors
in synchronous replica election in case of failures

VolumeSnapshotConfiguration

Appears in:Appears in:

BackupConfiguration

VolumeSnapshotConfiguration represents the configuration for the execution of snapshot backups.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 520

Field Description

labels
map[string]string

Labels are key-value pairs that will be added to .metadata.labels snapshot resources.

annotations
map[string]string

Annotations key-value pairs that will be added to .metadata.annotations snapshot resources.

className
string

ClassName specifies the Snapshot Class to be used for PG_DATA PersistentVolumeClaim. It is the default
class for the other types if no specific class is present

walClassName
string

WalClassName specifies the Snapshot Class to be used for the PG_WAL PersistentVolumeClaim.

tablespaceClassName
map[string]string

TablespaceClassName specifies the Snapshot Class to be used for the tablespaces. defaults to the
PGDATA Snapshot Class, if set

snapshotOwnerReference
SnapshotOwnerReference

SnapshotOwnerReference indicates the type of owner reference the snapshot should have

online
bool

Whether the default type of backup with volume snapshots is online/hot (true , default) or offline/cold
(false)

onlineConfiguration
OnlineConfiguration

Configuration parameters to control the online/hot backup with volume snapshots

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 521

56 Backup and Recovery

Backup and recovery are in two separate sections.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 522

57 Appendix C - Common object stores for backups

WarningWarning

As of EDB Postgres for Kubernetes 1.26, native Barman Cloud support is deprecatednative Barman Cloud support is deprecated in favor of the Barman Cloud PluginBarman Cloud Plugin. While the native
integration remains functional for now, we strongly recommend beginning a gradual migration to the plugin-based interface after appropriate
testing. The Barman Cloud Plugin documentation describes how to use common object stores.

You can store the backup files in any service that is supported by the Barman Cloud infrastructure. That is:

Amazon S3
Microsoft Azure Blob Storage
Google Cloud Storage

You can also use any compatible implementation of the supported services.

The required setup depends on the chosen storage provider and is discussed in the following sections.

AWS S3

AWS Simple Storage Service (S3) is a very popular object storage service offered by Amazon.

As far as EDB Postgres for Kubernetes backup is concerned, you can define the permissions to store backups in S3 buckets in two ways:

If EDB Postgres for Kubernetes is running in EKS. you may want to use the IRSA authentication method
Alternatively, you can use the ACCESS_KEY_ID and ACCESS_SECRET_KEY credentials

AWS Access key

You will need the following information about your environment:

ACCESS_KEY_ID : the ID of the access key that will be used to upload files into S3

ACCESS_SECRET_KEY : the secret part of the access key mentioned above

ACCESS_SESSION_TOKEN : the optional session token, in case it is required

The access key used must have permission to upload files into the bucket. Given that, you must create a Kubernetes secret with the credentials, and you
can do that with the following command:

The credentials will be stored inside Kubernetes and will be encrypted if encryption at rest is configured in your installation.

Once that secret has been created, you can configure your cluster like in the following example:

kubectl create secret generic aws-creds
\
 --from-literal==ACCESS_KEY_ID=<<access key here>>
\
 --from-literal==ACCESS_SECRET_KEY=<<secret key
here>>
--from-literal=ACCESS_SESSION_TOKEN=<session token here> # if
required

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 523

https://cloudnative-pg.io/plugin-barman-cloud/docs/object_stores/
https://aws.amazon.com/s3/
https://docs.aws.amazon.com/eks/latest/userguide/iam-roles-for-service-accounts.html

The destination path can be any URL pointing to a folder where the instance can upload the WAL files, e.g. s3://BUCKET_NAME/path/to/folder .

IAM Role for Service Account (IRSA)

In order to use IRSA you need to set an annotation in the ServiceAccount of the Postgres cluster.

We can configure EDB Postgres for Kubernetes to inject them using the serviceAccountTemplate stanza:

S3 lifecycle policy

Barman Cloud writes objects to S3, then does not update them until they are deleted by the Barman Cloud retention policy. A recommended approach for
an S3 lifecycle policy is to expire the current version of objects a few days longer than the Barman retention policy, enable object versioning, and expire
non-current versions after a number of days. Such a policy protects against accidental deletion, and also allows for restricting permissions to the EDB
Postgres for Kubernetes workload so that it may delete objects from S3 without granting permissions to permanently delete objects.

Other S3-compatible Object Storages providers

In case you're using S3-compatible object storage, like MinIOMinIO or Linode Object StorageLinode Object Storage, you can specify an endpoint instead of using the default S3 one.

In this example, it will use the bucket of LinodeLinode in the region us-east1 .

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "<destination path
here>"
 s3Credentials::
 accessKeyId::
 name:: aws-creds
 key:: ACCESS_KEY_ID
 secretAccessKey::
 name:: aws-creds
 key:: ACCESS_SECRET_KEY

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
[[...]]
spec::
 serviceAccountTemplate::
 metadata::
 annotations::
 eks.amazonaws.com/role-arn:: arn:[...]
 [[...]]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 524

In case you're using Digital Ocean SpacesDigital Ocean Spaces, you will have to use the Path-style syntax. In this example, it will use the bucket from Digital Ocean SpacesDigital Ocean Spaces in
the region SFO3 .

Using Object Storage with a private CA

Suppose you configure an Object Storage provider which uses a certificate signed with a private CA, for example when using OpenShift or MinIO via HTTPS.
In that case, you need to set the option endpointCA inside barmanObjectStore referring to a secret containing the CA bundle, so that Barman can
verify the certificate correctly. You can find instructions on creating a secret using your cert files in the certificates document. Once you have created the
secret, you can populate the endpointCA as in the following example:

NoteNote

If you want ConfigMaps and Secrets to be automaticallyautomatically reloaded by instances, you can add a label with key
k8s.enterprisedb.io/reload to the Secrets/ConfigMaps. Otherwise, you will have to reload the instances using the kubectl cnp
reload subcommand.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "s3://bucket/"
 endpointURL:: "https://us-east1.linodeobjects.com"
 s3Credentials::
 [[...]]

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "s3://[your-bucket-name]/[your-backup-folder]/"
 endpointURL:: "https://sfo3.digitaloceanspaces.com"
 s3Credentials::
 [[...]]

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 [[...]]
 backup::
 barmanObjectStore::
 endpointURL:: <myEndpointURL>
 endpointCA::
 name:: my-ca-
secret
 key::
ca.crt

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 525

Azure Blob Storage

Azure Blob Storage is the object storage service provided by Microsoft.

In order to access your storage account for backup and recovery of EDB Postgres for Kubernetes managed databases, you will need one of the following
combinations of credentials:

Connection String
Storage account name and Storage account access key
Storage account name and Storage account SAS Token
Storage account name and Azure AD Workload Identity properly configured.

Using Azure AD Workload IdentityAzure AD Workload Identity, you can avoid saving the credentials into a Kubernetes Secret, and have a Cluster configuration adding the
inheritFromAzureAD as follows:

On the other side, using both Storage account access keyStorage account access key or Storage account SAS TokenStorage account SAS Token, the credentials need to be stored inside a Kubernetes Secret,
adding data entries only when needed. The following command performs that:

The credentials will be encrypted at rest, if this feature is enabled in the used Kubernetes cluster.

Given the previous secret, the provided credentials can be injected inside the cluster configuration:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "<destination path
here>"
 azureCredentials::
 inheritFromAzureAD:: true

kubectl create secret generic azure-creds
\
 --from-literal==AZURE_STORAGE_ACCOUNT=<<storage account name>> \
 --from-literal==AZURE_STORAGE_KEY=<<storage account key>>
\
 --from-literal==AZURE_STORAGE_SAS_TOKEN=<<SAS token>> \
 --from-literal==AZURE_STORAGE_CONNECTION_STRING=<<connection
string>>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 526

https://azure.microsoft.com/en-us/services/storage/blobs/
https://docs.microsoft.com/en-us/azure/storage/common/storage-configure-connection-string#configure-a-connection-string-for-an-azure-storage-account
https://docs.microsoft.com/en-us/azure/storage/common/storage-account-keys-manage
https://docs.microsoft.com/en-us/azure/storage/blobs/sas-service-create
https://azure.github.io/azure-workload-identity/docs/introduction.html

When using the Azure Blob Storage, the destinationPath fulfills the following structure:

where <resource-path> is <container>/<blob> . The account nameaccount name, which is also called storage account namestorage account name, is included in the used host
name.

Other Azure Blob Storage compatible providers

If you are using a different implementation of the Azure Blob Storage APIs, the destinationPath will have the following structure:

In that case, <account-name> is the first component of the path.

This is required if you are testing the Azure support via the Azure Storage Emulator or Azurite.

Google Cloud Storage

Currently, the EDB Postgres for Kubernetes operator supports two authentication methods for Google Cloud Storage:

the first one assumes that the pod is running inside a Google Kubernetes Engine cluster
the second one leverages the environment variable GOOGLE_APPLICATION_CREDENTIALS

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "<destination path
here>"
 azureCredentials::
 connectionString::
 name:: azure-
creds
 key:: AZURE_CONNECTION_STRING
 storageAccount::
 name:: azure-
creds
 key::
AZURE_STORAGE_ACCOUNT
 storageKey::
 name:: azure-
creds
 key:: AZURE_STORAGE_KEY
 storageSasToken::
 name:: azure-
creds
 key:: AZURE_STORAGE_SAS_TOKEN

<<http||https>>://<<account-name>>.<<service-name>>.core.windows.net/<<resource-path>>

<<http||https>>://<<local-machine-address>>:<<port>>/<<account-name>>/<<resource-path>>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 527

https://github.com/Azure/Azurite
https://cloud.google.com/storage/

Running inside Google Kubernetes Engine

When running inside Google Kubernetes Engine you can configure your backups to simply rely on Workload Identity, without having to set any credentials.
In particular, you need to:

set .spec.backup.barmanObjectStore.googleCredentials.gkeEnvironment to true
set the iam.gke.io/gcp-service-account annotation in the serviceAccountTemplate stanza

Please use the following example as a reference:

Using authentication

Following the instruction from Google you will get a JSON file that contains all the required information to authenticate.

The content of the JSON file must be provided using a Secret that can be created with the following command:

kubectl create secret generic backup-creds --from-file=gcsCredentials=gcs_credentials_file.json

This will create the Secret with the name backup-creds to be used in the yaml file like this:

Now the operator will use the credentials to authenticate against Google Cloud Storage.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 [[...]]
 backup::
 barmanObjectStore::
 destinationPath:: "gs://<destination path
here>"
 googleCredentials::
 gkeEnvironment:: true

 serviceAccountTemplate::
 metadata::
 annotations::
 iam.gke.io/gcp-service-account:: [[...]].iam.gserviceaccount.com
 [[...]]

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
[[...]]
spec::
 backup::
 barmanObjectStore::
 destinationPath:: "gs://<destination path
here>"
 googleCredentials::
 applicationCredentials::
 name:: backup-creds
 key::
gcsCredentials

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 528

https://cloud.google.com/kubernetes-engine/docs/how-to/workload-identity
https://cloud.google.com/docs/authentication/getting-started

ImportantImportant

This way of authentication will create a JSON file inside the container with all the needed information to access your Google Cloud Storage
bucket, meaning that if someone gets access to the pod will also have write permissions to the bucket.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 529

58 External Secrets

External Secrets is a CNCF Sandbox project, accepted in 2022 under the sponsorship of TAG Security.

About

The External Secrets Operator (ESO)External Secrets Operator (ESO) is a Kubernetes operator that enhances secret management by decoupling the storage of secrets from Kubernetes
itself. It enables seamless synchronization between external secret management systems and native Kubernetes Secret resources.

ESO supports a wide range of backends, including:

HashiCorp Vault
AWS Secrets Manager
Google Secret Manager
Azure Key Vault
IBM Cloud Secrets Manager

…and many more. For a full and up-to-date list of supported providers, refer to the official External Secrets documentation.

Integration with PostgreSQL and EDB Postgres for Kubernetes

When it comes to PostgreSQL databases, External Secrets integrates seamlessly with EDB Postgres for Kubernetes in two major use cases:

Automated password management:Automated password management: ESO can handle the automatic generation and rotation of database user passwords stored in Kubernetes
Secret resources, ensuring that applications running inside the cluster always have access to up-to-date credentials.

Cross-platform secret access:Cross-platform secret access: It enables transparent synchronization of those passwords with an external Key Management Service (KMS) via a
SecretStore resources. This allows applications and developers outside the Kubernetes cluster—who may not have access to Kubernetes

secrets—to retrieve the database credentials directly from the external KMS.

Example: Automated Password Management with External Secrets

Let’s walk through how to automatically rotate the password of the app user every 24 hours in the cluster-example Postgres cluster from the
quickstart guide.

ImportantImportant

Before proceeding, ensure that the cluster-example Postgres cluster is up and running in your environment.

By default, EDB Postgres for Kubernetes generates and manages a Kubernetes Secret named cluster-example-app , which contains the
credentials for the app user in the cluster-example cluster. You can read more about this in the “Connecting from an application” section.

With External Secrets, the goal is to:

1. Define a Password generator that specifies how to generate the password.
2. Create an ExternalSecret resource that keeps the cluster-example-app secret in sync by updating only the password and pgpass

fields.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 530

https://external-secrets.io/latest/
https://www.vaultproject.io/
https://aws.amazon.com/secrets-manager/
https://cloud.google.com/secret-manager
https://azure.microsoft.com/en-us/services/key-vault/
https://www.ibm.com/cloud/secrets-manager
https://external-secrets.io/latest/
https://cloudnative-pg.io/

Creating the Password Generator

The following example creates a Password generator resource named pg-password-generator in the default namespace. You can customize
the name and properties to suit your needs:

This specification defines the characteristics of the generated password, including its length and the inclusion of digits, symbols, and uppercase letters.

Creating the External Secret

The example below creates an ExternalSecret resource named cluster-example-app-secret , which refreshes the password every 24 hours.
It uses a Merge policy to update only the specified fields (password , pgpass , jdbc-uri and uri) in the cluster-example-app secret.

The label k8s.enterprisedb.io/reload: "true" ensures that EDB Postgres for Kubernetes triggers a reload of the user password in the
database when the secret changes.

apiVersion:: generators.external-secrets.io/v1alpha1
kind::
Password
metadata::
 name:: pg-password-
generator
spec::
 length:: 42
 digits:: 5
 symbols:: 5
 symbolCharacters:: "-_$@"
 noUpper:: false
 allowRepeat:: true

apiVersion:: external-secrets.io/v1beta1
kind::
ExternalSecret
metadata::
 name:: cluster-example-app-
secret
spec::
 refreshInterval:: "24h"
 target::
 name:: cluster-example-
app
 creationPolicy:: Merge
 template::
 metadata::
 labels::
 k8s.enterprisedb.io/reload:: "true"
 data::
 password:: "{{ .password
}}"
 pgpass:: "cluster-example-rw:5432:app:app:{{ .password
}}"
 jdbc-uri:: "jdbc:postgresql://cluster-example-rw.default:5432/app?password={{ .password }}&user=app"
 uri:: "postgresql://app:{{ .password }}@cluster-example-
rw.default:5432/app"
 dataFrom::
 -- sourceRef::
 generatorRef::
 apiVersion:: generators.external-secrets.io/v1alpha1
 kind::
Password
 name:: pg-password-
generator

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 531

https://external-secrets.io/main/api/generator/password/

Verifying the Configuration

To check that the ExternalSecret is correctly synchronizing:

To observe the password being refreshed in real time, temporarily reduce the refreshInterval to 30s and run the following command repeatedly:

You should see the password change every 30 seconds, confirming that the rotation is working correctly.

There's More

While the example above focuses on the default cluster-example-app secret created by EDB Postgres for Kubernetes, the same approach can be
extended to manage any custom secrets or PostgreSQL users you create to regularly rotate their password.

Example: Integration with an External KMS

One of the most widely used Key Management Service (KMS) providers in the CNCF ecosystem is HashiCorp Vault. Although Vault is licensed under the
Business Source License (BUSL), a fully compatible and actively maintained open source alternative is available: OpenBao. OpenBao supports all the same
interfaces as HashiCorp Vault, making it a true drop-in replacement.

In this example, we'll demonstrate how to integrate EDB Postgres for Kubernetes, External Secrets Operator, and HashiCorp Vault to automatically rotate a
PostgreSQL password and securely store it in Vault.

ImportantImportant

This example assumes that HashiCorp Vault is already installed and properly configured in your environment, and that your team has the
necessary expertise to operate it. There are various ways to deploy Vault, and detailing them is outside the scope of EDB Postgres for Kubernetes.
While it's possible to run Vault inside Kubernetes, it is more commonly deployed externally. For detailed instructions, consult the HashiCorp Vault
documentation.

Continuing from the previous example, we will now create the necessary SecretStore and PushSecret resources to complete the integration with
Vault.

Creating the SecretStore

In this example, we assume that HashiCorp Vault is accessible from within the namespace at http://vault.vault.svc:8200 , and that a
Kubernetes Secret named vault-token exists in the same namespace, containing the token used to authenticate with Vault.

kubectl get es cluster-example-app-
secret

kubectl get secret cluster-example-app
\
 -o jsonpath="{.data.password}" || base64 -d

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 532

https://www.vaultproject.io/
https://openbao.org/
https://www.vaultproject.io/docs

This configuration creates a SecretStore resource named vault-backend .

ImportantImportant

This example uses basic token-based authentication, which is suitable for testing API, and CLI use cases. While it is the default method enabled
in Vault, it is not recommended for production environments. For production, consider using more secure authentication methods. Refer to the
External Secrets Operator documentation for a full list of supported authentication mechanisms.

InfoInfo

HashiCorp Vault must have a KV secrets engine enabled at the secrets path with version v2 . If your Vault instance uses a different path or
version, be sure to update the path and version fields accordingly.

Creating the PushSecret

The PushSecret resource is used to push a Kubernetes Secret to HashiCorp Vault. In this simplified example, we'll push the credentials for the app
user of the sample cluster cluster-example .

For more details on configuring PushSecret , refer to the External Secrets Operator documentation.

apiVersion:: external-secrets.io/v1beta1
kind::
SecretStore
metadata::
 name:: vault-
backend
spec::
 provider::
 vault::
 server:: "http://vault.vault.svc:8200"
 path:: "secrets"
 # Specifies the Vault KV secret engine version ("v1" or
"v2").
 # Defaults to "v2" if not
set.
 version:: "v2"
 auth::
 # References a Kubernetes Secret that contains the Vault
token.
 # See:
https://www.vaultproject.io/docs/auth/token
 tokenSecretRef::
 name:: "vault-token"
 key:: "token"

apiVersion:: v1
kind::
Secret
metadata::
 name:: vault-
token
data::
 token:: aHZzLioqKioqKio= #
hvs.*******

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 533

https://external-secrets.io/latest/provider/hashicorp-vault/
https://external-secrets.io/latest/api/pushsecret/

In this example, the PushSecret resource instructs the External Secrets Operator to push the Kubernetes Secret named cluster-example-app
to HashiCorp Vault (from the previous example). The remoteKey defines the name under which the secret will be stored in Vault, using the
SecretStore named vault-backend .

Verifying the Configuration

To verify that the PushSecret is functioning correctly, navigate to the HashiCorp Vault UI. In the kv secrets engine at the path secrets , you should
find a secret named cluster-example-app , corresponding to the remoteKey defined above.

apiVersion:: external-secrets.io/v1alpha1
kind:: PushSecret
metadata::
 name:: pushsecret-
example
spec::
 deletionPolicy::
Delete
 refreshInterval::
24h
 secretStoreRefs::
 -- name:: vault-
backend
 kind::
SecretStore
 selector::
 secret::
 name:: cluster-example-
app
 data::
 -- match::
 remoteRef::
 remoteKey:: cluster-example-
app

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 534

60 PostgreSQL Database Management

EDB Postgres for Kubernetes simplifies PostgreSQL database provisioning by automatically creating an application database named app by default. This
default behavior is explained in the "Bootstrap an Empty Cluster" section.

For more advanced use cases, EDB Postgres for Kubernetes introduces declarative database managementdeclarative database management, which empowers users to define and control the
lifecycle of PostgreSQL databases using the Database Custom Resource Definition (CRD). This method seamlessly integrates with Kubernetes, providing
a scalable, automated, and consistent approach to managing PostgreSQL databases.

Key Concepts

Scope of Management

ImportantImportant

EDB Postgres for Kubernetes manages global objectsglobal objects in PostgreSQL clusters, including databases, roles, and tablespaces. However, it does notnot
manage database content beyond extensions and schemas (e.g., tables). To manage database content, use specialized tools or rely on the
applications themselves.

Declarative Database Manifest

The following example demonstrates how a Database resource interacts with a Cluster :

When applied, this manifest creates a Database object called cluster-example-one requesting a database named one , owned by the app role,
in the cluster-example PostgreSQL cluster.

InfoInfo

Please refer to the API reference the full list of attributes you can define for each Database object.

Required Fields in the Database Manifest

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Database
metadata::
 name:: cluster-example-
one
spec::
 name::
one
 owner::
app
 cluster::
 name:: cluster-
example
 extensions::
 -- name:: bloom
 ensure:: present

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 535

Required Fields in the Database Manifest

metadata.name : Unique name of the Kubernetes object within its namespace.
spec.name : Name of the database as it will appear in PostgreSQL.
spec.owner : PostgreSQL role that owns the database.
spec.cluster.name : Name of the target PostgreSQL cluster.

The Database object must reference a specific Cluster , determining where the database will be created. It is managed by the cluster's primary
instance, ensuring the database is created or updated as needed.

InfoInfo

The distinction between metadata.name and spec.name allows multiple Database resources to reference databases with the same
name across different EDB Postgres for Kubernetes clusters in the same Kubernetes namespace.

Reserved Database Names

PostgreSQL automatically creates databases such as postgres , template0 , and template1 . These names are reserved and cannot be used for
new Database objects in EDB Postgres for Kubernetes.

ImportantImportant

Creating a Database with spec.name set to postgres , template0 , or template1 is not allowed.

Reconciliation and Status

Once a Database object is reconciled successfully:

status.applied will be set to true .
status.observedGeneration will match the metadata.generation of the last applied configuration.

Example of a reconciled Database object:

If an error occurs during reconciliation, status.applied will be false , and an error message will be included in the status.message field.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Database
metadata::
 generation:: 1
 name:: cluster-example-
one
spec::
 cluster::
 name:: cluster-
example
 name::
one
 owner::
app
status::
 observedGeneration:: 1
 applied:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 536

Deleting a Database

EDB Postgres for Kubernetes supports two methods for database deletion:

1. Using the delete reclaim policy
2. Declaratively setting the database's ensure field to absent

Deleting via delete Reclaim Policy

The databaseReclaimPolicy field determines the behavior when a Database object is deleted:

retain (default): The database remains in PostgreSQL for manual management.
delete : The database is automatically removed from PostgreSQL.

Example:

Deleting this Database object will automatically remove the two database from the cluster-example cluster.

Declaratively Setting ensure: absent

To remove a database, set the ensure field to absent like in the following example:.

This manifest ensures that the database-to-drop database is removed from the cluster-example cluster.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Database
metadata::
 name:: cluster-example-
two
spec::
 databaseReclaimPolicy::
delete
 name::
two
 owner::
app
 cluster::
 name:: cluster-
example

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Database
metadata::
 name:: cluster-example-database-to-
drop
spec::
 cluster::
 name:: cluster-
example
 name:: database-to-drop
 owner::
app
 ensure::
absent

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 537

Managing Extensions in a Database

InfoInfo

While extensions are database-scoped rather than global objects, EDB Postgres for Kubernetes provides a declarative interface for managing
them. This approach is necessary because installing certain extensions may require superuser privileges, which EDB Postgres for Kubernetes
recommends disabling by default. By leveraging this API, users can efficiently manage extensions in a scalable and controlled manner without
requiring elevated privileges.

EDB Postgres for Kubernetes simplifies and automates the management of PostgreSQL extensions within the target database.

To enable this feature, define the spec.extensions field with a list of extension specifications, as shown in the following example:

Each extension entry supports the following properties:

name (mandatory): The name of the extension.
ensure : Specifies whether the extension should be present or absent in the database:

present : Ensures that the extension is installed (default).
absent : Ensures that the extension is removed.

version : The specific version of the extension to install or upgrade to.
schema : The schema in which the extension should be installed.

InfoInfo

EDB Postgres for Kubernetes manages extensions using the following PostgreSQL’s SQL commands: CREATE EXTENSION , DROP
EXTENSION , ALTER EXTENSION (limited to UPDATE TO and SET SCHEMA).

The operator reconciles only the extensions explicitly listed in spec.extensions . Any existing extensions not specified in this list remain unchanged.

WarningWarning

Before the introduction of declarative extension management, EDB Postgres for Kubernetes did not offer a straightforward way to create
extensions through configuration. To address this, the "managed extensions" feature was introduced, enabling the automated and transparent
management of key extensions like pg_stat_statements . Currently, it is your responsibility to ensure there are no conflicts between
extension support in the Database CRD and the managed extensions feature.

Managing Schemas in a Database

InfoInfo

Schema management in PostgreSQL is an exception to EDB Postgres for Kubernetes' primary focus on managing global objects. Since schemas
exist within a database, they are typically managed as part of the application development process. However, EDB Postgres for Kubernetes
provides a declarative interface for schema management, primarily to complete the support of extensions deployment within schemas.

EDB Postgres for Kubernetes simplifies and automates the management of PostgreSQL schemas within the target database.

...
spec::
 extensions::
 -- name:: bloom
 ensure:: present

...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 538

https://www.postgresql.org/docs/current/sql-createextension.html
https://www.postgresql.org/docs/current/sql-dropextension.html
https://www.postgresql.org/docs/current/sql-alterextension.html

To enable this feature, define the spec.schemas field with a list of schema specifications, as shown in the following example:

Each schema entry supports the following properties:

name (mandatory): The name of the schema.
owner : The owner of the schema.
ensure : Specifies whether the schema should be present or absent in the database:

present : Ensures that the schema is installed (default).
absent : Ensures that the schema is removed.

InfoInfo

EDB Postgres for Kubernetes manages schemas using the following PostgreSQL’s SQL commands: CREATE SCHEMA , DROP SCHEMA ,
ALTER SCHEMA .

Limitations and Caveats

Renaming a database

While EDB Postgres for Kubernetes adheres to PostgreSQL’s CREATE DATABASE and ALTER DATABASE commands, renaming databases is not supportedrenaming databases is not supported.
Attempting to modify spec.name in an existing Database object will result in rejection by Kubernetes.

Creating vs. Altering a Database

For new databases, EDB Postgres for Kubernetes uses the CREATE DATABASE statement.
For existing databases, ALTER DATABASE is used to apply changes.

It is important to note that there are some differences between these two Postgres commands: in particular, the options accepted by ALTER are a subset
of those accepted by CREATE .

WarningWarning

Some fields, such as encoding and collation settings, are immutable in PostgreSQL. Attempts to modify these fields on existing databases will be
ignored.

Replica Clusters

Database objects declared on replica clusters cannot be enforced, as replicas lack write privileges. These objects will remain in a pending state until the
replica is promoted.

...
spec::
 schemas::
 -- name::
app
 owner::
app

...

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 539

https://www.postgresql.org/docs/current/sql-createschema.html
https://www.postgresql.org/docs/current/sql-dropschema.html
https://www.postgresql.org/docs/current/sql-alterschema.html
https://www.postgresql.org/docs/current/sql-createdatabase.html
https://www.postgresql.org/docs/current/sql-alterdatabase.html

Conflict Resolution

If two Database objects in the same namespace manage the same PostgreSQL database (i.e., identical spec.name and spec.cluster.name),
the second object will be rejected.

Example status message:

Postgres Version Differences

EDB Postgres for Kubernetes adheres to PostgreSQL's capabilities. For example, features like ICU_RULES introduced in PostgreSQL 16 are unavailable in
earlier versions. Errors from PostgreSQL will be reflected in the Database object's status .

Manual Changes

EDB Postgres for Kubernetes does not overwrite manual changes to databases. Once reconciled, a Database object will not be reapplied unless its
metadata.generation changes, giving flexibility for direct PostgreSQL modifications.

status::
 applied:: false
 message:: 'reconciliation error: database "one" is already managed by Database object "cluster-example-
one"'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 540

61 Image Catalog

ImageCatalog and ClusterImageCatalog are essential resources that empower you to define images for creating a Cluster .

The key distinction lies in their scope: an ImageCatalog is namespaced, while a ClusterImageCatalog is cluster-scoped.

Both share a common structure, comprising a list of images, each equipped with a major field indicating the major version of the image.

WarningWarning

The operator places trust in the user-defined major version and refrains from conducting any PostgreSQL version detection. It is the user's
responsibility to ensure alignment between the declared major version in the catalog and the PostgreSQL image.

The major field's value must remain unique within a catalog, preventing duplication across images. Distinct catalogs, however, may expose different
images under the same major value.

Example of a Namespaced Example of a Namespaced ImageCatalog ::

Example of a Cluster-Wide Catalog using Example of a Cluster-Wide Catalog using ClusterImageCatalog Resource: Resource:

A Cluster resource has the flexibility to reference either an ImageCatalog or a ClusterImageCatalog to precisely specify the desired image.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: ImageCatalog
metadata::
 name:: postgresql
 namespace:: default
spec::
 images::
 -- major:: 15
 image:: quay.io/enterprisedb/postgresql:15.6
 -- major:: 16
 image:: quay.io/enterprisedb/postgresql:16.8
 -- major:: 17
 image:: quay.io/enterprisedb/postgresql:17.5

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
ClusterImageCatalog
metadata::
 name:: postgresql
spec::
 images::
 -- major:: 15
 image:: quay.io/enterprisedb/postgresql:15.6
 -- major:: 16
 image:: quay.io/enterprisedb/postgresql:16.8
 -- major:: 17
 image:: quay.io/enterprisedb/postgresql:17.5

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 541

Clusters utilizing these catalogs maintain continuous monitoring. Any alterations to the images within a catalog trigger automatic updates for allall
associated clustersassociated clusters referencing that specific entry.

EDB Postgres for Kubernetes Catalogs

The EDB Postgres for Kubernetes project maintains ClusterImageCatalogs for the images it provides. These catalogs are regularly updated with the
latest images for each major version. By applying the ClusterImageCatalog.yaml file from the EDB Postgres for Kubernetes project's GitHub
repositories, cluster administrators can ensure that their clusters are automatically updated to the latest version within the specified major release.

PostgreSQL Container Images

You can install the latest version of the cluster catalog for the PostgreSQL Container Images (cloudnative-pg/postgres-containers repository) with:

kubectl apply \
 -f https://raw.githubusercontent.com/cloudnative-pg/postgres-containers/main/Debian/ClusterImageCatalog-
bookworm.yaml

PostGIS Container Images

You can install the latest version of the cluster catalog for the PostGIS Container Images (cloudnative-pg/postgis-containers repository) with:

kubectl apply \
 -f https://raw.githubusercontent.com/cloudnative-pg/postgis-
containers/main/PostGIS/ClusterImageCatalog.yaml

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 instances:: 3
 imageCatalogRef::
 apiGroup:: postgresql.k8s.enterprisedb.io
 kind:: ImageCatalog
 name:: postgresql
 major:: 16
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 542

https://raw.githubusercontent.com/cloudnative-pg/postgres-containers/main/Debian/ClusterImageCatalog-bookworm.yaml
https://github.com/enterprisedb/docker-postgres
https://raw.githubusercontent.com/cloudnative-pg/postgis-containers/main/PostGIS/ClusterImageCatalog.yaml
https://github.com/cloudnative-pg/postgis-containers

62 Iron Bank

EDB Postgres for Kubernetes(PG4K) is available on Iron Bank. As you can read in the overview page:

Iron Bank is the DoD's source for hardened containers.

[… snipped …]

Iron Bank ultimately is for anyone to consume or contribute. However, we specifically target the following personas:

DoD organizations wishing to consume hardened containers and Iron Banks BoE (Body of Evidence) for each container
DoD organizations wishing to help contribute to containers (e.g. bug fixes, new applications, updates)
DoD Authorization Officials wishing to understand the risks associated with applications
Commercial vendors wishing to bring their application to the DoD

Iron Bank is a part of DoD's Platform One.

You will need your Iron Bank credentials to access the Iron Bank page for EDB Postgres for Kubernetes.

Pulling the EDB PG4K and operand images from Iron Bank

The images are pulled from the separate Iron Bank container registry. To be able to pull images from the Iron Bank registry, please follow the instructions
from Iron Bank.

Specifically, you will need to use your registry1 credentials to pull images.

To find the desired operator or operand images, we recommend to use the search tool to look with the string enterprisedb , and filter by Tags ,
looking for stable , as shown in the image. From there, you can get the instruction to pull the image:

For example, to pull the EPAS16 operand from Ironbank, you can run:

If you want to pick a more specific tag or use a specific SHA, you need to find it from the Harbor page.

docker pull registry1.dso.mil/ironbank/enterprisedb/edb-postgres-advanced-
16:16

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 543

https://p1.dso.mil/services/iron-bank
https://docs-ironbank.dso.mil/overview/
https://p1.dso.mil/
https://repo1.dso.mil/dsop/enterprisedb/edb-pg4k-operator
https://registry1.dso.mil/
https://docs-ironbank.dso.mil/tutorials/image-pull/
https://registry1.dso.mil/harbor/projects
https://registry1.dso.mil/harbor/projects/3/repositories/enterprisedb%252Fedb-postgres-advanced-16/artifacts-tab

Installing the PG4K operator using the Iron Bank image

For installation, you will need a deployment manifest that points to your Iron Bank image. You can take the deployment manifest from the installation
instructions for EDB PG4K. For example, for the 1.22.0 release, the manifest is available at https://get.enterprisedb.io/cnp/postgresql-
operator-1.22.0.yaml . There are a couple of places where you will need to set the image path for the IronBank image.

If you wish for the operator to be deployed from Iron Bank directly, you will need to create and set the pull secret with the credentials to the registry, as
described above.

It may be easier to get the image from Iron Bank with the instructions on the site, and from there, re-tag and publish it to a local registry, or push it directly
to your Kubernetes nodes.

Once you have this in place, you can apply your manifest normally with kubectl apply -f , as described in the installation instructions.

Deploying clusters with EPAS operands using IronBank images

To deploy a cluster using the EPAS operand you must reference the Ironbank operand image appropriately in the Cluster resource YAML. For example,
to deploy a PG4K Cluster using the EPAS 16 operand:

Create or edit a Cluster resource YAML file with the following content:

apiVersion:: apps/v1
kind:: Deployment
metadata::
 labels::
 app.kubernetes.io/name:: cloud-native-
postgresql
 name:: postgresql-operator-controller-
manager
 namespace:: postgresql-operator-
system
spec::
 [[… snipped
…]]
 template::
 metadata::
 labels::
 app.kubernetes.io/name:: cloud-native-
postgresql
 spec::
 containers::
 -- args::
 -- controller
 [[… snipped
…]]
 env::
 -- name::
PULL_SECRET_NAME
 value:: postgresql-operator-pull-
secret
 -- name::
OPERATOR_IMAGE_NAME
 value:: <INSERT-YOUR-OPERATOR-
IMAGE>

 [[… snipped
…]]
 image:: <INSERT-YOUR-OPERATOR-
IMAGE>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 544

1. Create or edit a Cluster resource YAML file with the following content:

2. Apply the YAML:

kubectl apply -f <filename>

3. Verify the status of the resource:

kubectl get clusters

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-example-
full
spec::
 imageName:: registry1.dso.mil/ironbank/enterprisedb/edb-postgres-advanced-
17:17
 imagePullSecrets::
 -- name:: my_ironbank_secret

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 545

63 Logical Replication

PostgreSQL extends its replication capabilities beyond physical replication, which operates at the level of exact block addresses and byte-by-byte copying,
by offering logical replication. Logical replication replicates data objects and their changes based on a defined replication identity, typically the primary
key.

Logical replication uses a publish-and-subscribe model, where subscribers connect to publications on a publisher node. Subscribers pull data changes
from these publications and can re-publish them, enabling cascading replication and complex topologies.

This flexible model is particularly useful for:

Online data migrations
Live PostgreSQL version upgrades
Data distribution across systems
Real-time analytics
Integration with external applications

InfoInfo

For more details, examples, and limitations, please refer to the official PostgreSQL documentation on Logical Replication.

EDB Postgres for KubernetesEDB Postgres for Kubernetes enhances this capability by providing declarative support for key PostgreSQL logical replication objects:

PublicationsPublications via the Publication resource
SubscriptionsSubscriptions via the Subscription resource

Publications

In PostgreSQL's publish-and-subscribe replication model, a publicationpublication is the source of data changes. It acts as a logical container for the change sets (also
known as replication sets) generated from one or more tables within a database. Publications can be defined on any PostgreSQL 10+ instance acting as the
publisher, including instances managed by popular DBaaS solutions in the public cloud. Each publication is tied to a single database and provides fine-
grained control over which tables and changes are replicated.

For publishers outside Kubernetes, you can create publications using SQL or leverage the cnp publication create plugin command.

When managing Cluster objects with EDB Postgres for KubernetesEDB Postgres for Kubernetes, PostgreSQL publications can be defined declaratively through the Publication
resource.

InfoInfo

Please refer to the API reference for the full list of attributes you can define for each Publication object.

Suppose you have a cluster named freddie and want to replicate all tables in the app database. Here's a Publication manifest:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 546

https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/logical-replication.html
https://www.postgresql.org/docs/current/logical-replication-publication.html
https://www.postgresql.org/docs/current/sql-createpublication.html

In the above example:

The publication object is named freddie-publisher (metadata.name).
The publication is created via the primary of the freddie cluster (spec.cluster.name) with name publisher (spec.name).
It includes all tables (spec.target.allTables: true) from the app database (spec.dbname).

ImportantImportant

While allTables simplifies configuration, PostgreSQL offers fine-grained control for replicating specific tables or targeted data changes. For
advanced configurations, consult the PostgreSQL documentation. Additionally, refer to the EDB Postgres for Kubernetes API reference for details
on declaratively customizing replication targets.

Required Fields in the Publication Manifest

The following fields are required for a Publication object:

metadata.name : Unique name for the Kubernetes Publication object.
spec.cluster.name : Name of the PostgreSQL cluster.
spec.dbname : Database name where the publication is created.
spec.name : Publication name in PostgreSQL.
spec.target : Specifies the tables or changes to include in the publication.

The Publication object must reference a specific Cluster , determining where the publication will be created. It is managed by the cluster's primary
instance, ensuring the publication is created or updated as needed.

Reconciliation and Status

After creating a Publication , EDB Postgres for Kubernetes manages it on the primary instance of the specified cluster. Following a successful
reconciliation cycle, the Publication status will reflect the following:

applied: true , indicates the configuration has been successfully applied.
observedGeneration matches metadata.generation , confirming the applied configuration corresponds to the most recent changes.

If an error occurs during reconciliation, status.applied will be false , and an error message will be included in the status.message field.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Publication
metadata::
 name:: freddie-
publisher
spec::
 cluster::
 name:: freddie
 dbname::
app
 name:: publisher
 target::
 allTables:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 547

https://www.postgresql.org/docs/current/logical-replication.html

Removing a publication

The publicationReclaimPolicy field controls the behavior when deleting a Publication object:

retain (default): Leaves the publication in PostgreSQL for manual management.
delete : Automatically removes the publication from PostgreSQL.

Consider the following example:

In this case, deleting the Publication object also removes the publisher publication from the app database of the freddie cluster.

Subscriptions

In PostgreSQL's publish-and-subscribe replication model, a subscriptionsubscription represents the downstream component that consumes data changes. A
subscription establishes the connection to a publisher's database and specifies the set of publications (one or more) it subscribes to. Subscriptions can be
created on any supported PostgreSQL instance acting as the subscriber.

ImportantImportant

Since schema definitions are not replicated, the subscriber must have the corresponding tables already defined before data replication begins.

EDB Postgres for Kubernetes simplifies subscription management by enabling you to define them declaratively using the Subscription resource.

InfoInfo

Please refer to the API reference for the full list of attributes you can define for each Subscription object.

Suppose you want to replicate changes from the publisher publication on the app database of the freddie cluster (publisher) to the app
database of the king cluster (subscriber). Here's an example of a Subscription manifest:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Publication
metadata::
 name:: freddie-
publisher
spec::
 cluster::
 name:: freddie
 dbname::
app
 name:: publisher
 target::
 allTables:: true
 publicationReclaimPolicy::
delete

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 548

https://www.postgresql.org/docs/current/logical-replication-subscription.html

In the above example:

The subscription object is named freddie-to-king-subscriber (metadata.name).
The subscription is created in the app database (spec.dbname) of the king cluster (spec.cluster.name), with name subscriber
(spec.name).
It connects to the publisher publication in the external freddie cluster, referenced by spec.externalClusterName .

To facilitate this setup, the freddie external cluster must be defined in the king cluster's configuration. Below is an example excerpt showing how to
define the external cluster in the king manifest:

InfoInfo

For more details on configuring the externalClusters section, see the "Bootstrap" section of the documentation.

As you can see, a subscription can connect to any PostgreSQL database accessible over the network. This flexibility allows you to seamlessly migrate your
data into Kubernetes with nearly zero downtime. It’s an excellent option for transitioning from various environments, including popular cloud-based
Database-as-a-Service (DBaaS) platforms.

Required Fields in the Subscription Manifest

The following fields are mandatory for defining a Subscription object:

metadata.name : A unique name for the Kubernetes Subscription object within its namespace.
spec.cluster.name : The name of the PostgreSQL cluster where the subscription will be created.
spec.dbname : The name of the database in which the subscription will be created.
spec.name : The name of the subscription as it will appear in PostgreSQL.
spec.externalClusterName : The name of the external cluster, as defined in the spec.cluster.name cluster's configuration. This

references the publisher database.
spec.publicationName : The name of the publication in the publisher database to which the subscription will connect.

The Subscription object must reference a specific Cluster , determining where the subscription will be managed. EDB Postgres for Kubernetes
ensures that the subscription is created or updated on the primary instance of the specified cluster.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Subscription
metadata::
 name:: freddie-to-king-
subscription
spec::
 cluster::
 name:: king
 dbname::
app
 name:: subscriber
 externalClusterName:: freddie
 publicationName:: publisher

externalClusters::
 -- name:: freddie
 connectionParameters::
 host:: freddie-
rw.default.svc
 user::
postgres
 dbname::
app

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 549

Reconciliation and Status

After creating a Subscription , EDB Postgres for Kubernetes manages it on the primary instance of the specified cluster. Following a successful
reconciliation cycle, the Subscription status will reflect the following:

applied: true , indicates the configuration has been successfully applied.
observedGeneration matches metadata.generation , confirming the applied configuration corresponds to the most recent changes.

If an error occurs during reconciliation, status.applied will be false , and an error message will be included in the status.message field.

Removing a subscription

The subscriptionReclaimPolicy field controls the behavior when deleting a Subscription object:

retain (default): Leaves the subscription in PostgreSQL for manual management.
delete : Automatically removes the subscription from PostgreSQL.

Consider the following example:

In this case, deleting the Subscription object also removes the subscriber subscription from the app database of the king cluster.

Limitations

Logical replication in PostgreSQL has some inherent limitations, as outlined in the official documentation. Notably, the following objects are not
replicated:

Database schema and DDL commandsDatabase schema and DDL commands
Sequence dataSequence data
Large objectsLarge objects

Addressing Schema Replication

The first limitation, related to schema replication, can be easily addressed using EDB Postgres for Kubernetes' capabilities. For instance, you can leverage
the import bootstrap feature to copy the schema of the tables you need to replicate. Alternatively, you can manually create the schema as you would for
any PostgreSQL database.

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Subscription
metadata::
 name:: freddie-to-king-
subscription
spec::
 cluster::
 name:: king
 dbname::
app
 name:: subscriber
 externalClusterName:: freddie
 publicationName:: publisher
 subscriptionReclaimPolicy::
delete

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 550

https://www.postgresql.org/docs/current/logical-replication-restrictions.html

Handling Sequences

While sequences are not automatically kept in sync through logical replication, EDB Postgres for Kubernetes provides a solution to be used in live
migrations. You can use the cnp plugin to synchronize sequence values, ensuring consistency between the publisher and subscriber databases.

Example of live migration and major Postgres upgrade with logical replication

To highlight the powerful capabilities of logical replication, this example demonstrates how to replicate data from a publisher database (freddie)
running PostgreSQL 16 to a subscriber database (king) running the latest PostgreSQL version. This setup can be deployed in your Kubernetes cluster for
evaluation and hands-on learning.

This example illustrates how logical replication facilitates live migrations and upgrades between PostgreSQL versions while ensuring data consistency. By
combining logical replication with EDB Postgres for Kubernetes, you can easily set up, manage, and evaluate such scenarios in a Kubernetes environment.

Step 1: Setting Up the Publisher (freddie)

The first step involves creating a freddie PostgreSQL cluster with version 16. The cluster contains a single instance and includes an app database
initialized with a table, n , storing 10,000 numbers. A logical replication publication named publisher is also configured to include all tables in the
database.

Here’s the manifest for setting up the freddie cluster and its publication resource:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 551

Step 2: Setting Up the Subscriber (king)

Next, create the king PostgreSQL cluster, running the latest version of PostgreSQL. This cluster initializes by importing the schema from the app
database on the freddie cluster using the external cluster configuration. A Subscription resource, freddie-to-king-subscription , is
then configured to consume changes published by the publisher on freddie .

Below is the manifest for setting up the king cluster and its subscription:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: freddie
spec::
 instances:: 1

 imageName::
quay.io/enterprisedb/postgresql:16

 storage::
 size::
1Gi

 bootstrap::
 initdb::
 postInitApplicationSQL::
 -- CREATE TABLE n (i SERIAL PRIMARY KEY, m
INTEGER)
 -- INSERT INTO n (m) (SELECT generate_series(1,
10000))
 -- ALTER TABLE n OWNER TO
app

 managed::
 roles::
 -- name::
app
 login:: true
 replication:: true

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind::
Publication
metadata::
 name:: freddie-
publisher
spec::
 cluster::
 name:: freddie
 dbname::
app
 name:: publisher
 target::
 allTables:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 552

Once the king cluster is running, you can verify that the replication is working by connecting to the app database and counting the records in the n
table. The following example uses the psql command provided by the cnp plugin for simplicity:

kubectl cnp psql king -- app -qAt -c 'SELECT count(*) FROM n'
10000

This command should return 10000 , confirming that the data from the freddie cluster has been successfully replicated to the king cluster.

Using the cnp plugin, you can also synchronize existing sequences to ensure consistency between the publisher and subscriber. The example below
demonstrates how to synchronize a sequence for the king cluster:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: king
spec::
 instances:: 1

 storage::
 size::
1Gi

 bootstrap::
 initdb::
 import::
 type:: microservice
 schemaOnly:: true
 databases::
 --
app
 source::
 externalCluster:: freddie

 externalClusters::
 -- name:: freddie
 connectionParameters::
 host:: freddie-
rw.default.svc
 user::
app
 dbname::
app
 password::
 name:: freddie-
app
 key::
password

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Subscription
metadata::
 name:: freddie-to-king-
subscription
spec::
 cluster::
 name:: king
 dbname::
app
 name:: subscriber
 externalClusterName:: freddie
 publicationName:: publisher

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 553

kubectl cnp subscription sync-sequences king --subscription=subscriber
SELECT setval('"public"."n_i_seq"', 10000);

10000

This command updates the sequence n_i_seq in the king cluster to match the current value, ensuring it is in sync with the source database.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 554

64 PostgreSQL Upgrades

PostgreSQL upgrades fall into two categories:

Minor version upgrades (e.g., from 17.0 to 17.1)
Major version upgrades (e.g., from 16.x to 17.0)

Minor Version Upgrades

PostgreSQL version numbers follow a major.minor format. For instance, in version 17.1:

17 is the major version
1 is the minor version

Minor releases are fully compatible with earlier and later minor releases of the same major version. They include bug fixes and security updates but do not
introduce changes to the internal storage format. For example, PostgreSQL 17.1 is compatible with 17.0 and 17.5.

Upgrading a Minor Version in EDB Postgres for Kubernetes

To upgrade to a newer minor version, simply update the PostgreSQL container image reference in your cluster definition, either directly or via image
catalogs. EDB Postgres for Kubernetes will trigger a rolling update of the cluster, replacing each instance one by one, starting with the replicas. Once all
replicas have been updated, it will perform either a switchover or a restart of the primary to complete the process.

Major Version Upgrades

Major PostgreSQL releases introduce changes to the internal data storage format, requiring a more structured upgrade process.

EDB Postgres for Kubernetes supports three methods for performing major upgrades:

1. Logical dump/restore – Blue/green deployment, offline.
2. Native logical replication – Blue/green deployment, online.
3. Physical with pg_upgrade – In-place upgrade, offline (covered in the "Offline In-Place Major Upgrades" section below).

Each method has trade-offs in terms of downtime, complexity, and data volume handling. The best approach depends on your upgrade strategy and
operational constraints.

ImportantImportant

We strongly recommend testing all methods in a controlled environment before proceeding with a production upgrade.

Offline In-Place Major Upgrades

EDB Postgres for Kubernetes performs an offline in-place major upgradeoffline in-place major upgrade when a new operand container image with a higher PostgreSQL major version is
declaratively requested for a cluster.

ImportantImportant

Major upgrades are only supported between images based on the same operating system distribution. For example, if your previous version uses a
bullseye image, you cannot upgrade to a bookworm image.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 555

You can trigger the upgrade in one of two ways:

By updating the major version in the image tag via the .spec.imageName option.
Using an image catalog to manage version changes.

For details on supported image tags, see "Image Tag Requirements".

WarningWarning

EDB Postgres for Kubernetes is not responsible for PostgreSQL extensions. You must ensure that extensions in the source PostgreSQL image are
compatible with those in the target image and that upgrade paths are supported. Thoroughly test the upgrade process in advance to avoid
unexpected issues. The extensions management feature can help manage extension upgrades declaratively.

Upgrade Process

1. Shuts down all cluster pods to ensure data consistency.
2. Records the previous PostgreSQL version and image in the cluster’s status under .status.pgDataImageInfo .
3. Initiates a new upgrade job, which:

Verifies that the binaries in the image and the data files align with a major upgrade request.
Creates new directories for PGDATA , and where applicable, WAL files and tablespaces.
Performs the upgrade using pg_upgrade with the --link option.
Upon successful completion, replaces the original directories with their upgraded counterparts.

WarningWarning

During the upgrade process, the entire PostgreSQL cluster, including replicas, is unavailable to applications. Ensure that your system can
tolerate this downtime before proceeding.

WarningWarning

Performing an in-place upgrade is an exceptional operation that carries inherent risks. It is strongly recommended to take a full backup of the
cluster before initiating the upgrade process.

InfoInfo

For detailed guidance on pg_upgrade , refer to the official PostgreSQL documentation.

Post-Upgrade Actions

If the upgrade is successful, EDB Postgres for Kubernetes:

Destroys the PVCs of replicas (if available).
Scales up replicas as required.

WarningWarning

Re-cloning replicas can be time-consuming, especially for very large databases. Plan accordingly to accommodate potential delays. After
completing the upgrade, it is strongly recommended to take a full backup. Existing backup data (namely base backups and WAL files) is only
available for the previous minor PostgreSQL release.

WarningWarning

pg_upgrade doesn't transfer optimizer statistics. After the upgrade, you may want to run ANALYZE on your databases to update them.

If the upgrade fails, you must manually revert the major version change in the cluster's configuration and delete the upgrade job, as EDB Postgres for
Kubernetes cannot automatically decide the rollback.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 556

https://www.postgresql.org/docs/current/pgupgrade.html

ImportantImportant

This process protects your existing database from data lossprotects your existing database from data loss, as no data is modified during the upgrade. If the upgrade fails, a rollback is usually
possible, without having to perform a full recovery from a backup. Ensure you monitor the process closely and take corrective action if needed.

Example: Performing a Major Upgrade

Consider the following PostgreSQL cluster running version 16:

You can check the current PostgreSQL version using the following command:

This will return output similar to:

PostgreSQL 16.x ...

To upgrade the cluster to version 17, update the imageName field by changing the major version tag from 16 to 17 :

Upgrade Process

1. Cluster shutdown – All cluster pods are terminated to ensure a consistent upgrade.
2. Upgrade job execution – A new job is created with the name of the primary pod, appended with the suffix -major-upgrade . This job runs

pg_upgrade on the primary’s persistent volume group.
3. Post-upgrade steps:

The PVC groups of the replicas (cluster-example-2 and cluster-example-3) are removed.
The primary pod is restarted.
Two new replicas (cluster-example-4 and cluster-example-5) are re-cloned from the upgraded primary.

Once the upgrade is complete, you can verify the new major version by running the same command:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 imageName:: quay.io/enterprisedb/postgresql:16-minimal-bookworm
 instances:: 3
 storage::
 size::
1Gi

kubectl cnp psql cluster-example -- -qAt -c 'SELECT
version()'

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: cluster-
example
spec::
 imageName:: quay.io/enterprisedb/postgresql:17-minimal-bookworm
 instances:: 3
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 557

This should now return output similar to:

PostgreSQL 17.x ...

You can now update the statistics by running ANALYZE on the app database:

kubectl cnp psql cluster-example -- -qAt -c 'SELECT
version()'

kubectl cnp psql cluster-example -- app -c
'ANALYZE'

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 558

65 Preview Versions

EDB Postgres for Kubernetes candidate releases are pre-release versions made available for testing before the community issues a new generally available
(GA) release. These versions are feature-frozen, meaning no new features are added, and are intended for public testing prior to the final release.

ImportantImportant

EDB Postgres for Kubernetes release candidates are not intended for use in production systems.

Purpose of Release Candidates

Release candidates are provided to the community for extensive testing before the official release. While a release candidate aims to be identical to the
initial release of a new minor version of EDB Postgres for Kubernetes, additional changes may be implemented before the GA release.

Community Involvement

The stability of each EDB Postgres for Kubernetes minor release significantly depends on the community's efforts to test the upcoming version with their
workloads and tools. Identifying bugs and regressions through user testing is crucial in determining when we can finalize the release.

Usage Advisory

The EDB Postgres for Kubernetes Community strongly advises against using preview versions of EDB Postgres for Kubernetes in production environments
or active development projects. Although EDB Postgres for Kubernetes undergoes extensive automated and manual testing, beta releases may contain
serious bugs. Features in preview versions may change in ways that are not backwards compatible and could be removed entirely.

Current Preview Version

The current preview version is 1.26.0-rc31.26.0-rc3.

The preview version is available on OpenShift.

There are two different manifests available depending on your subscription plan:

Standard: The release candidate for the standard operator manifest.
Enterprise: The release candidate for the enterprise operator manifest.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 559

https://get.enterprisedb.io/pg4k/pg4k-standard-1.26.0-rc3.yaml
https://get.enterprisedb.io/pg4k/pg4k-enterprise-1.26.0-rc3.yaml

66 EDB private container registries

The images for the EDB Postgres for Kubernetes operator, as well as various operands, are kept in private container image registries under
docker.enterprisedb.com .

ImportantImportant

Access to the private registries requires an account with EDB and is reserved to EDB customers with a valid subscription plan. Credentials will be
funneled through your EDB account.

ImportantImportant

There is a bandwidth quota of 10GB/month per registry.

NoteNote

When installing the operator and operands from the private registry, the license keys are not needed.

Which repository to choose?

EDB Postgres for Kubernetes is available with either of "EDB Enterprise Plan" or "EDB Standard Plan".

Depending on your subscription plan, EDB Postgres for Kubernetes will be in one of the following repositories, as described in the table below:

Plan Repository

EDB Standard Plan k8s_standard

EDB EnterpriseDB Plan k8s_enterprise

The name of the repository shall be used as the Username when you try to login to the EDB container registry, for example through docker login or a
kubernetes.io/dockerconfigjson pull secret.

ImportantImportant

Each repository contains all the images you can access with your plan. You don't need to connect to different repositories to access different
images, such as operator or operand images.

How to retrieve the token

In the repositories page in EDB, you'll find an EDB Repos 2.0 section where a Repo Token is shown, obscured. The same token is also be available in
your Account profile, labeled as Repos 2.0 token .

Next to the token you'll find a button to copy the token, and an eye icon in case you want to view the content of the token as clear text. The token shall be
used as the Password when you try to access the EDB container registry.

Example with docker login

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 560

https://www.enterprisedb.com/products/plans-comparison#selfmanagedenterpriseplan
https://kubernetes.io/docs/concepts/configuration/secret/#secret-types
https://www.enterprisedb.com/repos-downloads
https://www.enterprisedb.com/accounts/profile

Example with docker login

You should be able to login via Docker from your terminal. We suggest you copy the Repo Token using the Copy Token button. The docker command
below will prompt you for a username and a password.

As explained above, the username should be the repository you are trying to access while the password is the token you just copied.

Operand images

EDB Postgres for Kubernetes supports various PostgreSQL distributions that have images available from the same private registries:

EDB Postgres Advanced (EPAS)
EDB Postgres Extended (PGE)

NoteNote

PostgreSQL images are not available in the private registries, but are readily available on quay.io/enterprisedb/postgresql or
ghcr.io/enterprisedb/postgresql .

These images follow the requirements and the conventions described in the "Container image requirements" page of the EDB Postgres for Kubernetes
documentation.

In the table below you can find the image name prefix for each Postgres distribution:

Postgres distribution Image name Repositories

EDB Postgres Extended (PGE) edb-postgres-extended k8s_standard , k8s_enterprise

EDB Postgres Advanced
(EPAS)

edb-postgres-advanced k8s_enterprise

How to deploy clusters with EPAS or PGE operands

If you have already installed the EDB Postgres for Kubernetes operator from the private registry, you must have already set up an image pull secret. If you
haven't, the next section may be of interest to you.

If you have an existing installation of the operator, in order to pull images for EPAS or PGE from the private registry, you will need to create a
kubernetes.io/dockerconfigjson pull secret.

You can create a pull secret from credentials.

As mentioned above, the docker-username is the name of your registry, i.e. k8s_standard or k8s_enterprise . The docker-password is

$ docker login docker.enterprisedb.com
Username:
k8s_enterprise
Password:
Login Succeeded

kubectl create secret docker-registry registry-pullsecret
\
 -n <<CLUSTER-NAMESPACE>> --docker-server=docker.enterprisedb.com
\
 --docker-username=<=<REGISTRY-NAME>> \
 --docker-password=<=<TOKEN>>

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 561

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types
https://kubernetes.io/docs/tasks/configure-pod-container/pull-image-private-registry/#create-a-secret-by-providing-credentials-on-the-command-line

As mentioned above, the docker-username is the name of your registry, i.e. k8s_standard or k8s_enterprise . The docker-password is
the token retrieved from the EDB portal.

Once your pull secret is created, remember to set the imagePullSecrets field in the cluster manifest in addition to the imageName . The manifest
below will create a cluster running PG Extended from the k8s_enterprise repository.

How to install the operator using the EDB private registry

As mentioned above, the username for docker is the name of your repository, and the token is the password. The same credentials can be used for
kubernetes to access the registry by setting up a kubernetes.io/dockerconfigjson pull secret.

As mentioned in the installation document, there are several different ways to install the operator.

If you are going to install using images from the private registry, you will need to create a pull secret, as we have mentioned, and also customize the
OPERATOR_IMAGE_NAME parameter in the deployment manifest.

We suggest to use the Helm chart for installation, which will take care of creating the pull secret and customizing the operator image repository for you.

You can find more information in the Helm chart page.

As an example, the following command (provided the token) will install the PG4K operator when using the repository from the EDB EnterpriseDB Plan:

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: postgresql-extended-
cluster
spec::
 instances:: 3
 imageName:: docker.enterprisedb.com/k8s_enterprise/edb-postgres-extended:16.2
 imagePullSecrets::
 -- name:: registry-pullsecret

 storage::
 storageClass::
standard
 size::
1Gi

helm upgrade --install edb-pg4k \
 --namespace postgresql-operator-system
\
 --create-namespace \
 --set image.repository=docker.enterprisedb.com/k8s_enterprise/edb-postgres-for-kubernetes
\
 --set image.imageCredentials.username=k8s_enterprise \
 --set image.imageCredentials.password=<<ENTITLEMENT_TOKEN>> \
 --set image.imageCredentials.create=true
\
 --set "imagePullSecrets[0].name"=postgresql-operator-pull-secret \
 --set config.data.PULL_SECRET_NAME=postgresql-operator-pull-secret \
 edb/edb-postgres-for-
kubernetes

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 562

https://kubernetes.io/docs/concepts/configuration/secret/#secret-types
https://github.com/EnterpriseDB/edb-postgres-for-kubernetes-charts

67 Service Management

A PostgreSQL cluster should only be accessed via standard Kubernetes network services directly managed by EDB Postgres for Kubernetes. For more
details, refer to the "Service" page of the Kubernetes Documentation.

EDB Postgres for Kubernetes defines three types of services for each Cluster resource:

rw : Points to the primary instance of the cluster (read/write).
ro : Points to the replicas, where available (read-only).
r : Points to any PostgreSQL instance in the cluster (read).

By default, EDB Postgres for Kubernetes creates all the above services for a Cluster resource, with the following conventions:

The name of the service follows this format: <CLUSTER_NAME>-<SERVICE_NAME> .
All services are of type ClusterIP .

ImportantImportant

Default service names are reserved for EDB Postgres for Kubernetes usage.

While this setup covers most use cases for accessing PostgreSQL within the same Kubernetes cluster, EDB Postgres for Kubernetes offers flexibility to:

Disable the creation of the ro and/or r default services.
Define your own services using the standard Service API provided by Kubernetes.

You can mix these two options.

A common scenario arises when using EDB Postgres for Kubernetes in database-as-a-service (DBaaS) contexts, where access to the database from outside
the Kubernetes cluster is required. In such cases, you can create your own service of type LoadBalancer , if available in your Kubernetes environment.

Disabling Default Services

You can disable any or all of the ro and r default services through the managed.services.disabledDefaultServices option.

ImportantImportant

The rw service is essential and cannot be disabled because EDB Postgres for Kubernetes relies on it to ensure PostgreSQL replication.

For example, if you want to remove both the ro (read-only) and r (read) services, you can use this configuration:

<snip>
managed::
 services::
 disabledDefaultServices:: [["ro",, "r"]]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 563

https://kubernetes.io/docs/concepts/services-networking/service/#virtual-ips-and-service-proxies

Adding Your Own Services

ImportantImportant

When defining your own services, you cannot use any of the default reserved service names that follow the convention <CLUSTER_NAME>-
<SERVICE_NAME> . It is your responsibility to pick a unique name for the service in the Kubernetes namespace.

You can define a list of additional services through the managed.services.additional stanza by specifying the service type (e.g., rw) in the
selectorType field and optionally the updateStrategy .

The serviceTemplate field gives you access to the standard Kubernetes API for the network Service resource, allowing you to define both the
metadata and the spec sections as you like.

You must provide a name to the service and avoid defining the selector field, as it is managed by the operator.

WarningWarning

Service templates give you unlimited possibilities in terms of configuring network access to your PostgreSQL database. This translates into
greater responsibility on your end to ensure that services work as expected. EDB Postgres for Kubernetes has no control over the service
configuration, except honoring the selector.

The updateStrategy field allows you to control how the operator updates a service definition. By default, the operator uses the patch strategy,
applying changes directly to the service. Alternatively, the replace strategy deletes the existing service and recreates it from the template.

WarningWarning

The replace strategy will cause a service disruption with every change. However, it may be necessary for modifying certain parameters that
can only be set during service creation.

For example, if you want to have a single LoadBalancer service for your PostgreSQL database primary, you can use the following excerpt:

The above example also shows how to set metadata such as annotations and labels for the created service.

About Exposing Postgres Services

There are primarily three use cases for exposing your PostgreSQL service outside your Kubernetes cluster:

Temporarily, for testing.
Permanently, for DBaaS purposesDBaaS purposes.
Prolonged period/permanently, for legacy applicationslegacy applications that cannot be easily or sustainably containerized and need to reside in a virtual machine or
physical machine outside Kubernetes. This use case is very similar to DBaaS.

<snip>
managed::
 services::
 additional::
 -- selectorType:: rw
 serviceTemplate::
 metadata::
 name:: "mydb-lb"
 labels::
 test-label:: "true"
 annotations::
 test-annotation:: "true"
 spec::
 type:: LoadBalancer

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 564

Be aware that allowing access to a database from the public network could expose your database to potential attacks from malicious users.

WarningWarning

Ensure you secure your database before granting external access, or make sure your Kubernetes cluster is only reachable from a private network.

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 565

68 Tablespaces

A tablespace is a robust and widely embraced feature in database management systems. It offers a powerful means to enhance the vertical scalability of a
database by decoupling the physical and logical modeling of data. Essentially, it serves as a technique for physical database modeling, enabling the
efficient distribution of I/O operations across multiple volumes on distinct storage. It thereby optimizes performance through parallel on-disk read/write
operations.

In the context of the database industry, tablespaces play a strategic role, particularly when paired with table partitioning, a logical database modeling
technique. They prove instrumental in managing large-scale databases and are also used for tasks such as separating tables from indexes or executing
temporary operations.

Tablespaces in PostgreSQL have been playing a pivotal role since 2005 (version 8.0), while declarative partitioning was introduced in 2017 (version 10).
Consequently, tablespaces are seamlessly integrated into all supported releases of PostgreSQL. Quoting from the PostgreSQL documentation on
tablespaces:

By using tablespaces, an administrator can control the disk layout of a PostgreSQL installation. This is useful in at least two ways.

First, if the partition or volume on which the cluster was initialized runs out of space and cannot be extended, a tablespace can be created
on a different partition and used until the system can be reconfigured.
Second, tablespaces allow an administrator to use knowledge of the usage pattern of database objects to optimize performance.

Declarative tablespaces

EDB Postgres for Kubernetes provides support for PostgreSQL tablespaces through declarative tablespaces, operating at two distinct levels:

Kubernetes, managing persistent volume claims, identically to how PGDATA and WAL volumes are handled
PostgreSQL, managing the TABLESPACE global objects in the PostgreSQL instance

Being a part of the Kubernetes ecosystem, EDB Postgres for Kubernetes' declarative tablespaces are implemented by leveraging persistent volume claims
(and persistent volumes). Each tablespace defined in the cluster is housed in its own persistent volume. EDB Postgres for Kubernetes takes care of
generating the PVCs. It mounts the required volumes in the instance pods in normalized locations and ensures replicas are ready to support tablespaces
before activating them in the primary.

You can set up tablespaces when creating the cluster or add them later, provided the storage is available when requested. Currently, you can't remove
them. However, this limitation will be addressed in a future minor or patch version of EDB Postgres for Kubernetes.

Using declarative tablespaces

Using declarative tablespaces is straightforward. You can find a full example in cluster-example-with-tablespaces.yaml .

To use them, use the new tablespaces stanza on a new or existing Cluster resource:

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 566

https://www.postgresql.org/docs/current/manage-ag-tablespaces.html
https://www.enterprisedb.com/docs/postgres_for_kubernetes/samples/cluster-example-with-tablespaces.yaml

Each tablespace has its own storage section where you can configure the size and the storage class of the generated PVC. The administrator can thus plan
to use different storage classes for different kinds of workloads, as explained in Storage classes and tablespaces.

EDB Postgres for Kubernetes creates the persistent volume claims for each instance in the high-availability Postgres cluster. It mounts them in each pod
when they have been provisioned. Then, it ensures that the tbs1 , tbs2 , and tbs3 tablespaces are created on the primary PostgreSQL instance using
the CREATE TABLESPACE command. This process is quick, and you see this reflected in Postgres:

You can start using them right away:

The cluster status has a section for tablespaces:

spec::
 instances:: 3

 #
...

 tablespaces::
 -- name:: tbs1
 storage::
 size::
1Gi
 -- name:: tbs2
 storage::
 size::
2Gi
 -- name:: tbs3
 storage::
 size::
2Gi

app=# SELECT oid, spcname FROM
pg_tablespace;
 oid | spcname
-------+--------------------
 1663 |
pg_default
 1664 |
pg_global
 16387 |
tbs1
 16388 |
tbs2
 16389 |
tbs3
(5 rows)

app=# CREATE TABLE fibonacci(num INTEGER) TABLESPACE
tbs1;
CREATE TABLE

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 567

Storage classes and tablespaces

You can use different storage classes for your tablespaces, just as you can for PGDATA and WAL volumes. This is a convenient way of optimizing your
resources, balancing performance and costs of your storage based on data access usage and expectations.

This example helps to explain the feature:

The yardbirds cluster example requests 4 persistent volume claims using 3 different storage classes:

Default storage class – Used by the PGDATA and WAL volumes.
fastest – Used by the current tablespace to store the most active and demanding set of data in the database.
balanced – Used by the this_year tablespace to store older partitions of data that are rarely accessed by users and where performance

expectations aren't the highest.

You can then take advantage of horizontal table partitioning and create the current month's table (for example, facts for December 2023) in the current
tablespace:

status::

 <- snipped -
>
 tablespacesStatus::
 -- name::
atablespace
 state:: reconciled
 -- name:: another_tablespace
 state:: reconciled
 -- name:: tablespacea1
 state:: reconciled

apiVersion:: postgresql.k8s.enterprisedb.io/v1
kind:: Cluster
metadata::
 name:: yardbirds
spec::
 instances:: 3

 storage::
 size:: 10Gi
 walStorage::
 size:: 10Gi
 tablespaces::
 -- name:: current
 storage::
 size:: 100Gi
 storageClass:: fastest
 -- name:: this_year
 storage::
 size:: 500Gi
 storageClass::
balanced

CREATECREATE TABLETABLE facts_202312 PARTITIONPARTITION OFOF facts
 FORFOR VALUESVALUES FROMFROM ('2023-12-01') TOTO ('2024-01-
01')
 TABLESPACETABLESPACE currentcurrent;

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 568

ImportantImportant

This example assumes you're familiar with PostgreSQL declarative partitioning.

Tablespace ownership

By default, unless otherwise specified, tablespaces are owned by the app application user, as defined in .spec.bootstrap.initdb.owner . See
Bootstrap a new cluster for details. This default behavior works in most microservice database use cases.

You can set the owner of a tablespace in the owner stanza, for example the postgres user, like in the following excerpt:

ImportantImportant

If you change the ownership of a tablespace, make sure that you're using an existing role. Otherwise, the status of the cluster reports the issue
and stops reconciling tablespaces until fixed. It's your responsibility to monitor the status and the log and to promptly intervene by fixing the
issue.

If you define a tablespace with an owner that doesn't exist, EDB Postgres for Kubernetes can't create the tablespace and reflects this in the cluster status:

 #
...
 tablespaces::
 -- name:: clapton
 owner::
 name::
postgres
 storage::
 size::
1Gi

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 569

https://www.postgresql.org/docs/current/ddl-partitioning.html

Backup and recovery

EDB Postgres for Kubernetes handles backup of tablespaces (and the relative tablespace map) both on object stores and volume snapshots.

WarningWarning

By default, backups are taken from replica nodes. A backup taken immediately after creating tablespaces in a cluster can result in an incomplete
view of the tablespaces from the replica and thus an incomplete backup. The lag will be resolved in a maximum of 5 minutes, with the next
reconciliation.

Once a cluster with tablespaces has a base backup, you can restore a new cluster from it. When it comes to the recovery side, it's your responsibility to
ensure that the Cluster definition of the recovered database contains the exact list of tablespaces.

Replica clusters

Replica clusters must have the same tablespace definition as their origin. The reason is that tablespace management commands like CREATE
TABLESPACE are WAL logged and are replayed by any physical replication client (streaming or by way of WAL shipping).

It's your responsibility to ensure that replica clusters have the same list of tablespaces, with the same name. Storage class and size might vary.

spec::
 instances:: 3

 #
...

 tablespaces::
 -- name:: tbs1
 storage::
 size::
1Gi
 -- name:: tbs2
 storage::
 size::
2Gi
 -- name:: tbs3
 owner::
 name:: badhombre
 storage::
 size::
2Gi
 status::

 <- snipped -
>
 tablespacesStatus::
 -- name:: tbs1
 status:: reconciled
 -- name:: tbs2
 status:: reconciled
 -- error:: 'while creating tablespace tbs3: ERROR: role "badhombre"
does
 not exist (SQLSTATE
42704)'
 name:: tbs3
 status:: pending

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 570

For example:

Temporary tablespaces

PostgreSQL allows you to define one or more temporary tablespaces to create temporary objects (temporary tables and indexes on temporary tables) when
a CREATE command doesn't explicitly specify a tablespace, and to create temporary files for purposes such as sorting large data sets. When no temporary
tablespace is specified, PostgreSQL uses the default tablespace of a database, which is currently the main PGDATA volume.

When you specify more than one temporary tablespace, PostgreSQL randomly picks one the first time a temporary object needs to be created in a
transaction. Then it sequentially iterates through the list.

Temporary tablespaces also work like regular tablespaces with regard to backups.

EDB Postgres for Kubernetes provides the .spec.tablespaces[*].temporary option to determine whether to add a tablespace to the
temp_tablespaces PostgreSQL parameter and thus become eligible to store temporary data that doesn't have an explicit tablespace assignment.

They can be created at initialization time or added later, requiring a rolling update. The temporary: true/false option adds or removes the
tablespace name to or from the list of tablespaces in the temp_tablespaces option. This change doesn't require a restart of PostgreSQL.

Although temporary tablespaces can also work as regular tablespaces (meaning that users can also host regular data on them while using them for
temporary operations), we recommend that you don't mix the two workloads.

See the PostgreSQL documentation on temp_tablespaces for details.

spec::

 #
...
 bootstrap::
 recovery::
 # ... your selected recovery
method

 tablespaces::
 -- name:: tbs1
 storage::
 size::
1Gi
 -- name:: tbs2
 storage::
 size::
2Gi
 -- name:: tbs3
 storage::
 size::
2Gi

spec::
 [[...]]
 tablespaces::
 -- name::
atablespace
 storage::
 size::
1Gi
 temporary:: true

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 571

https://www.postgresql.org/docs/current/runtime-config-client.html#GUC-TEMP-TABLESPACES

kubectl plugin support

The kubectl status plugin includes a section dedicated to tablespaces that offers a convenient overview, including tablespace status, owner, temporary flag,
and any errors:

Limitations

Currently, you can't remove tablespaces from an existing EDB Postgres for Kubernetes cluster.

[[...]]

Tablespaces
status
Tablespace Owner Status Temporary
Error
---------- ----- ------ --------- ----
-
atablespace app reconciled true
another_tablespace app reconciled true
tablespacea1 app reconciled false

Instances
status
[[...]]

EDB Postgres® AI for CloudNativePG™ Cluster

Copyright © 2009 - 2025 EnterpriseDB Corporation. All rights reserved. 572

	1 EDB Postgres® AI for CloudNativePG™ Cluster
	Key features in common with CloudNativePG™
	Features unique to EDB Postgres of Kubernetes
	Long Term Support

	Licensing
	Supported releases and Kubernetes distributions
	Multiple architectures

	Supported Postgres versions
	About this guide

	2 EDB CloudNativePG Cluster release notes
	2.1 EDB CloudNativePG Cluster 1.26.0 release notes
	Changes

	2.2 EDB CloudNativePG Cluster 1.25.2 release notes
	Changes

	2.3 EDB Postgres for Kubernetes 1.25.1 release notes
	2.4 EDB Postgres for Kubernetes 1.25.0 release notes
	2.5 EDB CloudNativePG Cluster 1.24.4 release notes
	Changes

	2.6 EDB Postgres for Kubernetes 1.24.3 release notes
	2.7 EDB Postgres for Kubernetes 1.24.2 release notes
	2.8 EDB Postgres for Kubernetes 1.24.1 release notes
	2.9 EDB Postgres for Kubernetes 1.24.0 release notes
	2.10 EDB Postgres for Kubernetes 1.23.6 release notes
	2.11 EDB Postgres for Kubernetes 1.23.5 release notes
	2.12 EDB Postgres for Kubernetes 1.23.4 release notes
	2.13 EDB Postgres for Kubernetes 1.23.3 release notes
	2.14 EDB Postgres for Kubernetes 1.23.2 release notes
	2.15 EDB Postgres for Kubernetes 1.23.1 release notes
	2.16 EDB Postgres for Kubernetes 1.23.0 release notes
	2.17 EDB CloudNativePG Cluster 1.22.10 release notes
	Enhancements
	Security Fixes
	Changes
	Bug Fixes

	2.18 EDB Postgres for Kubernetes 1.22.9 release notes
	Enhancements
	Security
	Bug Fixes
	Technical Enhancements

	2.19 EDB Postgres for Kubernetes 1.22.8 release notes
	Enhancements
	Bug Fixes

	2.20 EDB Postgres for Kubernetes 1.22.7 release notes
	Enhancements:
	Fixes:
	Supported versions

	2.21 EDB Postgres for Kubernetes 1.22.6 release notes
	Features
	Enhancements
	Fixes

	2.22 EDB Postgres for Kubernetes 1.22.5 release notes
	2.23 EDB Postgres for Kubernetes 1.22.4 release notes
	2.24 EDB Postgres for Kubernetes 1.22.3 release notes
	2.25 EDB Postgres for Kubernetes 1.22.2 release notes
	2.26 EDB Postgres for Kubernetes 1.22.1 release notes
	2.27 EDB Postgres for Kubernetes 1.22.0 release notes
	2.28 EDB Postgres for Kubernetes 1.21.6 release notes
	2.29 EDB Postgres for Kubernetes 1.21.5 release notes
	2.30 EDB Postgres for Kubernetes 1.21.4 release notes
	2.31 EDB Postgres for Kubernetes 1.21.3 release notes
	2.32 EDB Postgres for Kubernetes 1.21.2 release notes
	2.33 EDB Postgres for Kubernetes 1.21.1 release notes
	2.34 EDB Postgres for Kubernetes 1.21.0 release notes
	2.35 EDB Postgres for Kubernetes 1.20.6 release notes
	2.36 EDB Postgres for Kubernetes 1.20.5 release notes
	2.37 EDB Postgres for Kubernetes 1.20.4 release notes
	2.38 EDB Postgres for Kubernetes 1.20.3 release notes
	2.39 EDB Postgres for Kubernetes 1.20.2 release notes
	2.40 EDB Postgres for Kubernetes 1.20.1 release notes
	2.41 EDB Postgres for Kubernetes 1.20.0 release notes
	2.42 EDB Postgres for Kubernetes 1.19.6 release notes
	2.43 EDB Postgres for Kubernetes 1.19.5 release notes
	2.44 EDB Postgres for Kubernetes 1.19.4 release notes
	2.45 EDB Postgres for Kubernetes 1.19.3 release notes
	2.46 EDB Postgres for Kubernetes 1.19.2 release notes
	2.47 EDB Postgres for Kubernetes 1.19.1 release notes
	2.48 EDB Postgres for Kubernetes 1.19.0 release notes
	2.49 EDB Postgres for Kubernetes 1.18.13 release notes
	2.50 EDB Postgres for Kubernetes 1.18.12 release notes
	2.51 EDB Postgres for Kubernetes 1.18.11 release notes
	2.52 EDB Postgres for Kubernetes 1.18.10 release notes
	2.53 EDB Postgres for Kubernetes 1.18.9 release notes
	2.54 EDB Postgres for Kubernetes 1.18.8 release notes
	2.55 EDB Postgres for Kubernetes 1.18.7 release notes
	Highlights of EDB Postgres for Kubernetes 1.8.7

	2.56 EDB Postgres for Kubernetes 1.18.6 release notes
	2.57 EDB Postgres for Kubernetes 1.18.5 release notes
	2.58 EDB Postgres for Kubernetes 1.18.4 release notes
	2.59 EDB Postgres for Kubernetes 1.18.3 release notes
	2.60 EDB Postgres for Kubernetes 1.18.2 release notes
	2.61 EDB Postgres for Kubernetes 1.18.1 release notes
	2.62 EDB Postgres for Kubernetes 1.18.0 release notes
	2.63 EDB Postgres for Kubernetes 1.17.5 release notes
	2.64 EDB Postgres for Kubernetes 1.17.4 release notes
	2.65 EDB Postgres for Kubernetes 1.17.3 release notes
	2.66 EDB Postgres for Kubernetes 1.17.2 release notes
	2.67 EDB Postgres for Kubernetes 1.17.1 release notes
	2.68 EDB Postgres for Kubernetes 1.17.0 release notes
	2.69 EDB Postgres for Kubernetes 1.16.5 release notes
	2.70 EDB Postgres for Kubernetes 1.16.4 release notes
	2.71 EDB Postgres for Kubernetes 1.16.3 release notes
	2.72 EDB Postgres for Kubernetes 1.16.2 release notes
	2.73 EDB Postgres for Kubernetes 1.16.1 release notes
	Important changes to our upgrade policy
	Important information about upgrading to a 1.16.x operator version on Openshift

	2.74 EDB Postgres for Kubernetes 1.16.0 release notes
	Important changes to our upgrade policy
	Important information about upgrading to a 1.16.x operator version on Openshift

	2.75 EDB Postgres for Kubernetes 1.15.5 release notes
	2.76 EDB Postgres for Kubernetes 1.15.4 release notes
	2.77 EDB Postgres for Kubernetes 1.15.3 release notes
	Important changes to our upgrade policy

	2.78 EDB Postgres for Kubernetes 1.15.2 release notes
	Important changes to our upgrade policy

	2.79 EDB Postgres for Kubernetes 1.15.1 release notes
	2.80 EDB Postgres for Kubernetes 1.15.0 release notes
	2.81 EDB Postgres for Kubernetes 1.14.0 release notes
	2.82 EDB Postgres for Kubernetes 1.13.0 release notes
	2.83 EDB Postgres for Kubernetes 1.12.0 release notes
	2.84 EDB Postgres for Kubernetes 1.11.0 release notes
	2.85 EDB Postgres for Kubernetes 1.10.0 release notes
	2.86 EDB Postgres for Kubernetes 1.9.2 release notes
	2.87 EDB Postgres for Kubernetes 1.9.1 release notes
	2.88 EDB Postgres for Kubernetes 1.9.0 release notes
	2.89 EDB Postgres for Kubernetes 1.8.0 release notes
	2.90 EDB Postgres for Kubernetes 1.7.1 release notes
	2.91 EDB Postgres for Kubernetes 1.7.0 release notes
	2.92 EDB Postgres for Kubernetes 1.6.0 release notes
	2.93 EDB Postgres for Kubernetes 1.5.1 release notes
	2.94 EDB Postgres for Kubernetes 1.5.0 release notes
	2.95 EDB Postgres for Kubernetes 1.4.0 release notes
	2.96 EDB Postgres for Kubernetes 1.3.0 release notes
	2.97 EDB Postgres for Kubernetes 1.2.1 release notes
	2.98 EDB Postgres for Kubernetes 1.2.0 release notes
	2.99 EDB Postgres for Kubernetes 1.1 release notes
	2.100 EDB Postgres for Kubernetes 1.0 release notes
	2.101 EDB Postgres for Kubernetes 0.8 release notes
	2.102 EDB Postgres for Kubernetes 0.7 release notes
	2.103 EDB Postgres for Kubernetes 0.6 release notes
	2.104 EDB Postgres for Kubernetes 0.5 release notes
	2.105 EDB Postgres for Kubernetes 0.4 release notes
	2.106 EDB Postgres for Kubernetes 0.3 release notes
	2.107 EDB Postgres for Kubernetes 0.2 release notes
	2.108 EDB Postgres for Kubernetes 0.1 release notes
	2.109 EDB Postgres for Kubernetes 0.0.1 release notes
	3 Before You Start
	Kubernetes terminology
	PostgreSQL terminology
	Cloud terminology
	What to do next

	4 Use cases
	Case 1: Applications inside Kubernetes
	Case 2: Applications outside Kubernetes

	5 Architecture
	Synchronizing the state
	Kubernetes architecture
	Multi-availability zone Kubernetes clusters
	Single availability zone Kubernetes clusters
	Reserving nodes for PostgreSQL workloads
	Proposed node label
	Proposed node taint

	PostgreSQL architecture
	Read-write workloads
	Read-only workloads

	Deployments across Kubernetes clusters

	6 Installation and upgrades
	Installation on Kubernetes
	Obtaining an EDB subscription token
	Using the Helm Chart
	Directly using the operator manifest
	Install the EDB pull secret
	Install the operator

	Using the cnp plugin for kubectl

	Details about the deployment
	Upgrades
	Spread Upgrades
	In-place updates of the instance manager
	Compatibility among versions
	Upgrading to 1.26.0 or 1.25.2
	Upgrading to 1.25 from a previous minor version
	Upgrading to 1.24 from a previous minor version
	From Replica Clusters to Distributed Topology

	7 Quickstart
	Part 1 - Setup the local Kubernetes/Openshift Local playground
	Minikube
	Kind
	OpenShift Local (formerly CodeReady Containers (CRC))

	Part 2: Install EDB Postgres for Kubernetes
	Part 3: Deploy a PostgreSQL cluster
	Deploying EDB Postgres servers

	Part 4: Monitor clusters with Prometheus and Grafana
	Installation
	Viewing with Prometheus
	Grafana Dashboard

	8 PostgreSQL Configuration
	The postgresql section
	Replication Settings
	Log control settings
	Shared Preload Libraries
	Managed extensions
	Enabling auto_explain
	Enabling pg_stat_statements
	Enabling pgaudit
	Enabling pg_failover_slots

	The pg_hba section
	LDAP Configuration

	The pg_ident section
	Changing configuration
	Enabling ALTER SYSTEM
	Dynamic Shared Memory settings
	POSIX shared memory
	System V shared memory

	Fixed parameters

	9 Operator configuration
	Available options
	Defining an operator config map
	Defining an operator secret
	Restarting the operator to reload configs
	pprof HTTP Server

	10 Instance pod configuration
	Projected volumes
	Ephemeral volumes
	Volume Claim Template for Temporary Storage
	Volume for shared memory

	Environment variables

	11 Examples
	Basics
	Backups
	Replica clusters
	PostGIS
	Managed roles
	Managed services
	Declarative tablespaces
	Pooler configuration
	Logical replication via declarative Publication and Subscription objects
	Declarative management of Postgres databases

	13 Bootstrap
	The bootstrap section
	The externalClusters section
	Password files

	Bootstrap an empty cluster (initdb)
	Passing Options to initdb
	Executing Queries After Initialization
	Compatibility Features

	Bootstrap from another cluster
	Bootstrap from a backup (recovery)
	Bootstrap from a live cluster (pg_basebackup)
	Requirements
	About the replication user
	Username/Password authentication
	TLS certificate authentication
	Configure the application database
	Current limitations

	14 Importing Postgres databases
	How it works
	The microservice type
	The monolith type
	Import optimizations
	Customizing pg_dump and pg_restore Behavior
	Online Import and Upgrades

	15 Security
	Code
	Container
	Guidelines and Frameworks for Container Security

	Cluster
	Role Based Access Control (RBAC)
	Deployments and ClusterRole Resources
	Why Are ClusterRole Permissions Needed?

	Calls to the API server made by the instance manager
	Pod Security Policies
	Restricting Pod access using AppArmor
	Network Policies
	Exposed Ports

	PostgreSQL
	Storage

	16 Postgres instance manager
	Startup Probe
	Startup Probe Strategy

	Liveness Probe
	Primary Isolation (alpha)

	Readiness Probe
	Readiness Probe Strategy

	Shutdown control
	Shutdown of the primary during a switchover

	Failover
	Disk Full Failure

	17 Scheduling
	Pod Affinity and Anti-Affinity
	Requiring Pod Anti-Affinity
	Topology Considerations
	Disabling Anti-Affinity Policies
	Fine-Grained Control with Custom Rules

	Node selection through nodeSelector
	Tolerations
	Isolating PostgreSQL workloads

	18 Resource management
	19 Failure Modes
	Self-Healing
	Primary Failure
	Standby Failure

	Manual Intervention
	Disabling Reconciliation

	20 Rolling Updates
	Automated updates (unsupervised)
	Manual updates (supervised)

	21 Replication
	Application-level replication
	A very mature technology
	Streaming replication support
	Continuous backup integration

	Synchronous Replication
	Quorum-based Synchronous Replication
	Example
	Migrating from Deprecated Synchronous Replication Implementation

	Priority-based Synchronous Replication
	Controlling synchronous_standby_names Content
	Examples

	Data Durability and Synchronous Replication
	Required Data Durability
	Preferred Data Durability

	Synchronous Replication (Deprecated)
	Select nodes for synchronous replication

	Replication slots
	Replication slots for High Availability
	User-Defined Replication slots
	Synchronization frequency
	Capping the WAL size retained for replication slots
	Monitoring replication slots

	22 Backup
	Main Concepts
	WAL archive
	Cold and Hot backups

	Comparing Available Backup Options: Object Stores vs Volume Snapshots
	Object Store–Based Backups
	Volume Snapshots
	Choosing Between the Two
	Comparison Summary

	Scheduled Backups
	Cron Schedule
	Backup Frequency and RTO
	Immediate Backup

	On-Demand Backups
	Example: Requesting an On-Demand Backup
	Monitoring Backup Progress

	Backup Methods
	Backup from a Standby
	How It Works
	Forcing Backup on the Primary
	Overriding the Cluster-Wide Target

	Retention Policies

	23 Recovery
	Recovery from an Object Store with the Barman Cloud Plugin
	Recovery from VolumeSnapshot Objects
	Recovery from a Backup object
	Additional Considerations
	Point in time recovery (PITR)
	PITR from an object store
	Point-in-Time Recovery (PITR) from VolumeSnapshot Objects
	Recovery targets

	Configure the application database
	How recovery works under the hood
	Restoring into a Cluster with a Backup Section

	24 Appendix A - Backup on volume snapshots
	About standard Volume Snapshots
	Requirements
	How to configure Volume Snapshot backups
	Hot and cold backups
	Overriding the default behavior

	Persistence of volume snapshot objects
	Backup Volume Snapshot Deadlines
	Error Handling
	Retryable Errors
	Examples

	Example of Volume Snapshot Backup

	25 Appendix B - Backup on object stores
	Common object stores
	WAL archiving
	Retention policies
	Compression algorithms
	Tagging of backup objects
	Extra options for the backup and WAL commands
	Recovery from an object store

	26 WAL archiving
	Plugin-Based Architecture
	Supported Plugins
	Deprecation Notice: Native Barman Cloud
	About the archive timeout

	27 PostgreSQL Role Management
	Password management
	Password expiry, VALID UNTIL
	Password hashed

	Unrealizable role configurations
	Status of managed roles

	28 Storage
	Backup and recovery
	Benchmarking EDB Postgres for Kubernetes
	Encryption at rest
	Persistent Volume Claim (PVC)
	Configuration via a storage class
	Configuration via a PVC template
	Volume for WAL
	Volumes for tablespaces
	Volume expansion
	Using the volume expansion Kubernetes feature
	Re-creating storage

	Static provisioning of persistent volumes
	Block storage considerations (Ceph/Longhorn)

	29 Labels and annotations
	Predefined labels
	Predefined annotations
	Prerequisites
	Defining cluster's metadata
	Current limitations

	30 Monitoring
	Monitoring Instances
	Monitoring with the Prometheus operator
	Enabling TLS on the Metrics Port
	Predefined set of metrics
	User defined metrics
	Example of a user defined metric
	Example of a user defined metric with predicate query
	Example of a user defined metric running on multiple databases

	Structure of a user defined metric
	Output of a user defined metric
	Default set of metrics
	Differences with the Prometheus Postgres exporter

	Monitoring the EDB Postgres for Kubernetes operator
	Monitoring the operator with Prometheus

	How to inspect the exported metrics
	Using port forwarding
	Using curl

	Auxiliary resources
	Monitoring on OpenShift

	31 Logging
	Cluster Logs
	Operator Logs
	PostgreSQL Logs
	PGAudit Logs
	EDB Audit logs
	Other Logs

	32 Certificates
	Operator-Managed Mode
	Server certificates
	Server CA secret
	Server TLS secret
	Server alternative DNS names

	Client certificates
	Client CA secret
	Client streaming_replica certificate

	User-provided certificates mode
	Server certificates
	Example
	Cert-manager example

	Client certificate
	Cert-manager example

	33 Client TLS/SSL connections
	Issuing a new certificate
	Testing the connection via a TLS certificate
	About TLS protocol versions

	34 Connecting from an application
	DNS resolution
	Environment variables
	Secrets

	35 Connection pooling
	Architecture
	Quick start
	Pooler resource lifecycle
	Security
	Certificates

	Authentication
	Pod templates
	Service Template
	High availability (HA)
	PgBouncer configuration options
	Monitoring
	Logging
	Pausing connections
	Limitations
	Single PostgreSQL cluster
	Controlled configurability

	36 Replica clusters
	Basic Concepts
	About PostgreSQL Roles
	Bootstrapping a Replica Cluster
	Configuring Replication
	Defining an External Cluster
	Backup and Symmetric Architectures
	Distributed Architecture Flexibility

	Setting Up a Replica Cluster
	Distributed Topology
	Planning for a Distributed PostgreSQL Database
	Demoting a Primary to a Replica Cluster
	Promoting a Replica to a Primary Cluster

	Standalone Replica Clusters
	Main Differences with Distributed Topology
	Example of Standalone Replica Cluster using pg_basebackup
	Example of Standalone Replica Cluster from an object store
	Example using a Volume Snapshot

	Delayed replicas

	37 Kubernetes Upgrade and Maintenance
	Importance of Regular Updates
	Maintenance Operations in a Cluster
	Temporary PostgreSQL Cluster Degradation
	Pod Disruption Budgets
	PostgreSQL Clusters used for Development or Testing
	Node Maintenance Window
	Single instance clusters with reusePVC set to false

	38 EDB Postgres for Kubernetes Plugin
	Install
	Via the installation script
	Using the Debian or RedHat packages
	Debian packages
	RPM packages

	Supported Architectures
	Configuring auto-completion
	Configuring auto-completion

	Use
	Generation of installation manifests
	Status
	Promote
	Certificates
	Restart
	Reload
	Maintenance
	Report
	report Operator
	report Cluster

	Logs
	Cluster logs
	Pretty

	Destroy
	Cluster hibernation
	Benchmarking the database with pgbench
	Benchmarking the storage with fio
	Requesting a new physical backup
	Launching psql
	Snapshotting a Postgres cluster
	Using pgAdmin4 for evaluation/demonstration purposes only
	Logical Replication Publications
	Creating a new publication
	Dropping a publication

	Logical Replication Subscriptions
	Creating a new subscription
	Dropping a subscription
	Synchronizing sequences

	Integration with K9s
	Permissions required by the plugin
	Role examples

	39 Automated failover
	RTO and RPO impact
	Delayed failover

	40 Fencing
	How to fence instances
	How to lift fencing
	How fencing works

	41 Declarative hibernation
	Hibernation
	Rehydration

	42 PostGIS
	Basic concepts about a PostGIS cluster
	Create a new PostgreSQL cluster with PostGIS

	43 Container Image Requirements
	Image Tag Requirements

	44 Custom Pod Controller
	PVC resizing
	Primary Instances versus Replicas
	Coherence of PVCs
	Local storage, remote storage, and database size

	45 Networking
	Cross-namespace network policy for the operator
	Cross-cluster networking

	46 Benchmarking
	pgbench
	fio

	47 Free evaluation
	Evaluating using PostgreSQL

	48 License and License keys
	Company level license keys
	Kubernetes installations via YAML manifest

	Cluster level license keys
	License key secret at cluster level
	What happens when a license expires

	49 Red Hat OpenShift
	Architecture
	Reserving Nodes for PostgreSQL Workloads

	Important OpenShift concepts
	Cluster Service Version (CSV)
	Limitations for multi-tenant management

	Channels
	Installation via web console
	Ensuring access to EDB private registry
	Cluster-wide installation
	Single project installation

	Installation via the oc CLI
	Cluster-wide installation with oc
	Installing the OpenShift CLI (oc)

	Predefined RBAC objects
	Custom Resource Definitions (CRD)
	Service accounts
	Cluster roles
	Cluster roles on EDB Postgres for Kubernetes CRDs
	Cluster roles on Kubernetes CRDs

	Users and Permissions
	Pod Security Standards
	Customization of the Pooler image
	OADP for Velero
	Monitoring and metrics

	50 Transparent Data Encryption (TDE)
	Passphrase secret
	How to create the secret containing the passphrase

	Custom passphrase command
	Custom wrap/unwrap commands
	Example using HashiCorp Vault
	Enable TLS

	51 Add-ons
	External Backup Adapter
	Customizing the adapter
	The electedResourcesDecorators section
	The excludedResourcesDecorators section
	The excludedResourcesSelector section
	The backupInstanceDecorators section
	The preBackupHookConfiguration section
	The postBackupHookConfiguration section

	The external-backup-adapter add-on
	The external-backup-adapter-cluster add-on
	About the fencing annotation
	Limitations
	Full example of YAML file

	Kasten
	Limitations

	Velero
	Limitations
	Backup
	Restore

	52 Operator capability levels
	Level 1: Basic install
	Operator deployment via declarative configuration
	PostgreSQL cluster deployment via declarative configuration
	Override of operand images through the CRD
	Labels and annotations
	Self-contained instance manager
	Storage configuration
	Replica configuration
	Service Configuration
	Database configuration
	Configuration of Postgres roles, users, and groups
	Pod security standards
	Affinity
	Topology spread constraints
	License keys
	Command line interface
	Current status of the cluster
	Operator's certification authority
	Cluster's certification authority
	TLS connections
	Certificate authentication for streaming replication
	Continuous configuration management
	Import of existing PostgreSQL databases
	PostGIS clusters
	Basic LDAP authentication for PostgreSQL
	Multiple installation methods
	Convention over configuration

	Level 2: Seamless upgrades
	Operator Upgrade
	Upgrade of the managed workload
	Offline In-Place Major Upgrades of PostgreSQL
	Display cluster availability status during upgrade

	Level 3: Full lifecycle
	PostgreSQL WAL archive
	PostgreSQL Backups
	Backups from a standby
	Full restore from a backup
	Point-in-time recovery (PITR) from a backup
	Zero-Data-Loss Clusters Through Synchronous Replication
	Replica clusters
	Distributed Database Topologies
	Tablespace support
	Customizable Startup, Liveness, and Readiness Probes
	Rolling deployments
	Scale up and down of replicas
	Maintenance window and PodDisruptionBudget for Kubernetes nodes
	Fencing
	Hibernation
	Reuse of persistent volumes storage in pods
	CPU and memory requests and limits
	Connection pooling with PgBouncer
	Logical Replication
	Integration with external backup tools for Kubernetes

	Level 4: Deep insights
	Prometheus exporter with configurable queries
	Grafana dashboard
	Standard output logging of PostgreSQL error messages in JSON format
	Real-time query monitoring
	Audit
	Kubernetes events

	Level 5: Auto pilot
	Automated failover for self-healing
	Automated recreation of a standby

	53 Frequently Asked Questions (FAQ)
	Running PostgreSQL in Kubernetes
	High availability
	Database management

	54 Troubleshooting
	Before you start
	Kubernetes environment
	Useful utilities

	First steps
	Are there backups?
	Emergency backup
	Logs
	Operator information
	Gather more information about the operator

	Cluster information
	Pod information
	Gather and filter extra information about PostgreSQL pods

	Backup information
	Storage information
	Node information
	Conditions
	How to wait for a particular condition

	Networking
	PostgreSQL core dumps
	Some known issues
	Storage is full
	Pods are stuck in Pending state
	Replicas out of sync when no backup is configured
	Cluster stuck in Creating new replica
	Networking is impaired by installed Network Policies
	Error while bootstrapping the data directory
	Bootstrap job hangs in running status
	Replicas take over two minutes to reconnect after a failover

	55 API Reference - v1.26.0
	Resource Types
	Backup
	Cluster
	ClusterImageCatalog
	Database
	ImageCatalog
	Pooler
	Publication
	ScheduledBackup
	Subscription
	AffinityConfiguration
	AvailableArchitecture
	BackupConfiguration
	BackupMethod
	BackupPhase
	BackupPluginConfiguration
	BackupSnapshotElementStatus
	BackupSnapshotStatus
	BackupSource
	BackupSpec
	BackupStatus
	BackupTarget
	BootstrapConfiguration
	BootstrapInitDB
	BootstrapPgBaseBackup
	BootstrapRecovery
	CatalogImage
	CertificatesConfiguration
	CertificatesStatus
	ClusterMonitoringTLSConfiguration
	ClusterSpec
	ClusterStatus
	ConfigMapResourceVersion
	DataDurabilityLevel
	DataSource
	DatabaseObjectSpec
	DatabaseObjectStatus
	DatabaseReclaimPolicy
	DatabaseRoleRef
	DatabaseSpec
	DatabaseStatus
	EPASConfiguration
	EmbeddedObjectMetadata
	EnsureOption
	EphemeralVolumesSizeLimitConfiguration
	ExtensionSpec
	ExternalCluster
	ImageCatalogRef
	ImageCatalogSpec
	ImageInfo
	Import
	ImportSource
	InstanceID
	InstanceReportedState
	LDAPBindAsAuth
	LDAPBindSearchAuth
	LDAPConfig
	LDAPScheme
	ManagedConfiguration
	ManagedRoles
	ManagedService
	ManagedServices
	Metadata
	MonitoringConfiguration
	NodeMaintenanceWindow
	OnlineConfiguration
	PasswordState
	PgBouncerIntegrationStatus
	PgBouncerPoolMode
	PgBouncerSecrets
	PgBouncerSpec
	PluginConfiguration
	PluginStatus
	PodTemplateSpec
	PodTopologyLabels
	PoolerIntegrations
	PoolerMonitoringConfiguration
	PoolerSecrets
	PoolerSpec
	PoolerStatus
	PoolerType
	PostgresConfiguration
	PrimaryUpdateMethod
	PrimaryUpdateStrategy
	Probe
	ProbeStrategyType
	ProbeWithStrategy
	ProbesConfiguration
	PublicationReclaimPolicy
	PublicationSpec
	PublicationStatus
	PublicationTarget
	PublicationTargetObject
	PublicationTargetTable
	RecoveryTarget
	ReplicaClusterConfiguration
	ReplicationSlotsConfiguration
	ReplicationSlotsHAConfiguration
	RoleConfiguration
	SQLRefs
	ScheduledBackupSpec
	ScheduledBackupStatus
	SchemaSpec
	SecretVersion
	SecretsResourceVersion
	ServiceAccountTemplate
	ServiceSelectorType
	ServiceTemplateSpec
	ServiceUpdateStrategy
	SnapshotOwnerReference
	SnapshotType
	StorageConfiguration
	SubscriptionReclaimPolicy
	SubscriptionSpec
	SubscriptionStatus
	SwitchReplicaClusterStatus
	SyncReplicaElectionConstraints
	SynchronizeReplicasConfiguration
	SynchronousReplicaConfiguration
	SynchronousReplicaConfigurationMethod
	TDEConfiguration
	TablespaceConfiguration
	TablespaceState
	TablespaceStatus
	Topology
	VolumeSnapshotConfiguration

	56 Backup and Recovery
	57 Appendix C - Common object stores for backups
	AWS S3
	AWS Access key
	IAM Role for Service Account (IRSA)
	S3 lifecycle policy
	Other S3-compatible Object Storages providers
	Using Object Storage with a private CA

	Azure Blob Storage
	Other Azure Blob Storage compatible providers

	Google Cloud Storage
	Running inside Google Kubernetes Engine
	Using authentication

	58 External Secrets
	About
	Integration with PostgreSQL and EDB Postgres for Kubernetes
	Example: Automated Password Management with External Secrets
	Creating the Password Generator
	Creating the External Secret
	Verifying the Configuration
	There's More

	Example: Integration with an External KMS
	Creating the SecretStore
	Creating the PushSecret
	Verifying the Configuration

	60 PostgreSQL Database Management
	Key Concepts
	Scope of Management
	Declarative Database Manifest
	Required Fields in the Database Manifest

	Reserved Database Names
	Reconciliation and Status
	Deleting a Database
	Deleting via delete Reclaim Policy
	Declaratively Setting ensure: absent

	Managing Extensions in a Database
	Managing Schemas in a Database
	Limitations and Caveats
	Renaming a database
	Creating vs. Altering a Database
	Replica Clusters
	Conflict Resolution
	Postgres Version Differences
	Manual Changes

	61 Image Catalog
	EDB Postgres for Kubernetes Catalogs
	PostgreSQL Container Images
	PostGIS Container Images

	62 Iron Bank
	Pulling the EDB PG4K and operand images from Iron Bank
	Installing the PG4K operator using the Iron Bank image
	Deploying clusters with EPAS operands using IronBank images

	63 Logical Replication
	Publications
	Required Fields in the Publication Manifest
	Reconciliation and Status
	Removing a publication

	Subscriptions
	Required Fields in the Subscription Manifest
	Reconciliation and Status
	Removing a subscription

	Limitations
	Addressing Schema Replication
	Handling Sequences

	Example of live migration and major Postgres upgrade with logical replication
	Step 1: Setting Up the Publisher (freddie)
	Step 2: Setting Up the Subscriber (king)

	64 PostgreSQL Upgrades
	Minor Version Upgrades
	Upgrading a Minor Version in EDB Postgres for Kubernetes

	Major Version Upgrades
	Offline In-Place Major Upgrades
	Upgrade Process
	Post-Upgrade Actions
	Example: Performing a Major Upgrade
	Upgrade Process

	65 Preview Versions
	Purpose of Release Candidates
	Community Involvement
	Usage Advisory
	Current Preview Version

	66 EDB private container registries
	Which repository to choose?
	How to retrieve the token
	Example with docker login

	Operand images
	How to deploy clusters with EPAS or PGE operands
	How to install the operator using the EDB private registry

	67 Service Management
	Disabling Default Services
	Adding Your Own Services
	About Exposing Postgres Services

	68 Tablespaces
	Declarative tablespaces
	Using declarative tablespaces
	Storage classes and tablespaces
	Tablespace ownership
	Backup and recovery
	Replica clusters
	Temporary tablespaces
	kubectl plugin support
	Limitations

